END USER SOFTWARE LICENSE AGREEMENT

IMPORTANT:

This end user software license agreement (this “Agreement”) is a legal agreement between the end user (“Customer”) of the software accompanying this Agreement (the “Software”) and Meru Networks, Inc. (“Meru”). This Agreement governs Customer’s use of, and the term “Software includes, any and all computer software, any printed or electronic documentation, or other code, whether on a disk, in any memory device, embedded in a semiconductor, downloaded or on any other media provided to Customer by Meru Networks, Inc. (“Meru”) or its authorized reseller (“Reseller”) as part of a Meru product (“Meru Product”) or as a stand-alone product. Customer must read this Agreement carefully before installing or otherwise using the Software. By installing, downloading, embedding or otherwise using the Software, Customer agrees to be bound by the terms of this Agreement. This Agreement provides a license to use the Software and contains warranty disclaimers and liability limitations. By using the Software in any way, including but not limited to, requesting a license key from Meru, Customer confirms its acceptance of, and agreement to be bound by, the terms of this Agreement. If Customer does not agree to be bound by the terms of this Agreement, then Customer must: (i) erase all aspects of the Software from its computers; (ii) not request from Meru or anyone else a license key that would allow operation of the Software; and (iii) not operate the Software in any manner.

Article 1. License

1.1. Grant. Subject to Customer’s compliance with the terms and conditions in this Agreement, Meru grants Customer a non-exclusive, non-transferable royalty-free license to use the Software exclusively in connection with the Meru Product on which it has been embedded or for which it has been offered, and to use all written materials accompanying the Software (the “Documentation”).

1.2. Ownership of Software and Confidentiality.

(a). The Software is licensed, not sold, to Customer by Meru. CUSTOMER MAY OWN THE MEDIA ON WHICH THE SOFTWARE IS PROVIDED, BUT MERU AND/OR MERU’S LICENSOR(S) RETAIN TITLE TO THE SOFTWARE. Customer acknowledges that the Software and Documentation are protected, among other ways, by federal copyright law and international treaties and that they constitute confidential information of Meru, protected also by this Agreement. The organization, structure, sequence, logic and source code of the Software are valuable trade secrets of Meru and its licensors. Except for those rights expressly granted by this Agreement to Customer, Meru or its licensors retain and shall own all rights, title and interests in and to the Software, and Customer shall have no right, title or interest in or to any of, the Software or Documentation, including without limitation, the intellectual property rights comprising or related to the Software and Documentation.

(b). Customer shall keep the Software and Documentation confidential and shall take all reasonable precautions to preserve its confidentiality, including where applicable, having all of its employees and subcontractors execute confidentiality agreements that cover the Software and Documentation. Customer shall take all steps reasonably necessary to ensure that no person or entity has unauthorized access to the Software or Documentation.

1.3. Permitted Uses. This Agreement allows Customer to use the Software solely as embedded in the Meru Product on which the Software has been installed, for execution on, or (where the applicable documentation permits installation on non-Meru equipment)
for communication with Meru Product owned or leased by the Customer and in accordance with Meru's documentation. Notwithstanding the restrictions set out above in Section 1.2, Customer may make one copy of any Software that is offered separate from, not embedded in, a Meru Product, in a machine-readable form for back-up purposes only, subject to Customer including on the copy all copyright, trademark and other proprietary rights notices, as contained on the original version. Customer may copy the Documentation in a reasonable number for employees using the Software, subject to Customer including on each copy all copyright, trademark and other proprietary rights notices, as contained in the original version of the Documentation.

1.4. Restrictions on Use. Customer may not, nor may Customer permit any third party to: (a) decompile, reverse engineer, disassemble, or otherwise attempt to derive, reconstruct or discover any humanly readable form of the Software source code; (b) modify, translate, copy, reproduce, disclose, or create derivative works of the Software or Documentation; (c) allow access to the Software or Documentation by any third party other than agents and representatives working on Customer’s behalf; or (d) rent, lease, loan, distribute, assign or transfer the Software unless expressly permitted in writing by Meru or by this Agreement. Customer may not disclose, provide, or otherwise make available any trade secret and/or copyrighted material, including without limitation, the specific design and structure of individual programs or trade secrets, contained within or related to the Software to any third party without Meru's prior written consent. Additionally, Customer shall keep any result of any benchmark or other evaluation of the Software confidential and shall not publish any result of any such result without Meru’s prior written consent. Customer will implement reasonable security measures to protect such trade secrets and copyrighted materials. Customer shall not under any circumstance, and shall not permit any third party to, prepare any error correction, modification or derivative work of the Software or Documentation or remove deface or obscure any product identification, copyright, trademark, suppliers’ proprietary rights notices, or other notice on or in the Software or on output generated by the Software or the Documentation.

Article 2. Termination. This Agreement is effective until terminated. Customer’s rights under this Agreement will terminate automatically without notice from Meru if Customer violates any of the restrictions in Article 1 or breaches any term(s) of this Agreement. Upon termination, Customer must destroy all copies of the Software in Customer’s possession or control. Customer acknowledges and agrees that any unauthorized use, transfer, sublicensing or disclosure of the Software may cause irreparable injury to Meru, and under such circumstances, Meru shall be entitled to equitable relief, without posting bond or other security, including but not limited to, preliminary and permanent injunctive relief.

Article 3. Disclaimer of Warranty.

3.1. To the maximum extent permitted by law, Meru and Meru ’s licensor(s) (for the purposes of Articles 3 and 4, Meru and Meru ’s licensor(s) shall be collectively referred to as “Meru ”) provides the Software and Documentation “AS IS” and “WITHOUT WARRANTY”, and with respect to the Software and any Documentation, Meru hereby specifically excludes and disclaims the implied warranties of merchantability, and fitness for a particular use and all other warranties, whether express or implied by law, statute or course of dealing, and Meru specifically excludes all representations and warranties, whether statutory or otherwise, with respect to non-infringement of any nature of the rights of any third party.

3.2. Specifically, Meru does not warrant that the functions contained in the Software will meet Customer's requirements, or that the operation of the Software will be uninterrupted or error-free, or that defects in the Software will be corrected. Furthermore, Meru does not warrant or make any representation regarding the use or the results of the use of the Software or related documentation in terms of their correctness, accuracy, reliability, or otherwise. No oral or written information or advice given by Meru or Meru authorized representative shall create a warranty or in any way increase the scope of this warranty.

3.3. Meru does not warrant that the Software or any Appliance will be free of vulnerability to intrusion, virus attack or hacker attacks. The Software is not fault-tolerant nor designed or intended for use in hazardous environments requiring fail-safe performance, including without limitation, in the operation of nuclear facilities, aircraft navigation or communication systems, air

iv
traffic control, weapons systems, direct life-support machines or any other application in which the failure of the Software could lead directly to death, personal injury, or severe physical or property damage (collectively, "High Risk Activities"). Meru expressly disclaims any express or implied warranty of fitness for High Risk Activities.

Article 4. Limitation of Liability.

4.1. **CUSTOMER ASSUMES THE ENTIRE RISK AS TO RESULTS AND PERFORMANCE OF THE SOFTWARE. TO THE MAXIMUM EXTENT PERMITTED UNDER LAW, UNDER NO CIRCUMSTANCE SHALL MERU BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER ARISING OUT OF OR IN ANY WAY RELATED TO THIS AGREEMENT OR THE SOFTWARE.** Such limitation of damages includes, but is not limited to, lost good will, lost profits, loss of data or software, work stoppage or impairment of other goods, regardless of the legal theory on which the claim is brought, even if Meru has been advised of the possibility of such damage or if such damage could have been reasonably foreseen, and notwithstanding any failure of essential purpose of any exclusive remedy provided in this Agreement.

4.2. **IN NO EVENT SHALL MERU’S TOTAL LIABILITY IN CONNECTION WITH THIS AGREEMENT OR THE SOFTWARE, WHETHER BASED ON CONTRACT, WARRANTY, TORT, INCLUDING NEGLIGENCE, STRICT LIABILITY OR OTHERWISE, EXCEED (i) THE AMOUNT TO MERU FOR THE SOFTWARE LICENSE, OR (ii) IF NO SEPARATE FEE WAS PAID FOR THE SOFTWARE LICENSE, THE AMOUNTS PAID FOR THE MERU PRODUCT IN WHICH THE SOFTWARE IS EMBEDDED. IN NO CASE SHALL MERU BE LIABLE FOR THE COST OF PROCUREMENT OF ANY SUBSTITUTE PRODUCT, SOFTWARE OR SERVICE.**

4.3. Customer acknowledges that its agreement to the limitations of liability set out in this article is a crucial part of its consideration for the rights under the license grant.

Article 5. U.S. Government Rights. If Customer is the U.S. Government, Customer acknowledges that it obtains only those rights customarily provided to commercial end use customers. For U.S. governmental entities, this commercial license is provided in accordance with FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for Department of Defense purchasers, DFAR 252.227-7015 (Technical Data – Commercial Items) and DFAR 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation). Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in FAR 52.227-14(g), Rights in Data—General (June 1987) and FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987), or if under Department of Defense, DFAR 252.227-7015(b), Technical Data—Commercial Items (June 2004) and DFAR 227.7202-3(a) June 2005) in accordance with this Agreement. If Customer is a governmental entity that has a need for rights not addressed above in this Article 5, it must negotiate a separate agreement with Meru. Customer acknowledges that the Software source code is unpublished and that all rights are reserved under the copyright laws of the United States. Any use, modification, reproduction, display or disclosure of the Software or any documentation by the United States Government shall be governed by the terms of this Agreement.

Article 6. Export. The Software may be subject to the United States laws and regulations related to the export of technical data and products produced from such data. Customer shall not, without fully complying with all applicable laws and regulations, including all United States laws and regulations with respect to export, export any Software or any Appliance, allow any Software to be exported or transfer any Software to any person or entity that engages in the research or production of military devices, armaments or any instruments of warfare, including biological, chemical and nuclear warfare.

Article 7. Governing Law. This Agreement will be governed by and construed in accordance with the laws of the State of California, U.S.A., without reference to its conflict of law principles, and the United Nations Convention on Contracts for the International Sale of Goods does not apply. Except for actions for injunctive relief for a violation of intellectual property rights or confidentiality obligations, any action by either party with respect to this Agreement or the Software must be brought in the state or federal courts sitting in Santa Clara County, California, and each party submits to the personal jurisdiction of such courts.
Article 8. Injunctive Relief. Customer acknowledges that its violation of any restriction set out in Article 1 or of any obligation set out under Article 2 may cause irreparable harm to Meru and upon any such violation, Meru shall be entitled to seek equitable relief without posting any bond or other security.

Article 9. Entire Agreement; Waiver; Modifications; Severability. This Agreement constitutes the entire agreement between the parties with respect to the subject matter of this Agreement and supersedes and replaces all prior or contemporaneous understandings or agreements, written or oral, with respect to such subject matter. No modification or amendment of this Agreement or any waiver of any right under this Agreement shall be effective unless in writing and signed by an authorized representative of the party to be charged. Any waiver of any breach of any provision of this Agreement shall not be construed as a waiver of any continuing or succeeding breach of such provision or a waiver or modification of the provision. If a court of competent jurisdiction finds any provision of this Agreement invalid or unenforceable, that provision will be amended to achieve as nearly as possible the same economic effect as the original provision and the remainder of this Agreement will remain in full force. Failure of a party to enforce any provision of this Agreement shall not constitute and shall not be construed as a waiver of such provision or of the right to enforce such provision. CUSTOMER ACKNOWLEDGES THAT IT IS NOT RELYING UPON ANY ORAL REPRESENTATION BY Meru OF ANY NATURE, INCLUDING WITH RESPECT TO ANY WARRANTY.
terminal width 26

Chapter 3 File Management Commands 27
 cd 28
 copy 29
 copy running-config 31
 delete 33
 dir 35
 downgrade 36
 more 37
 pwd 39
 reload 40
 rename 41
 run 42
 show controller file systems 43
 show flash 45
 show running-config 46
 show startup-config 47
 show scripts 48
 upgrade ap 49
 upgrade controller 51
 upgrade system 53

Chapter 4 System Management Commands 55
 audit period 56
 calendar set 57
 clear statistics interfaces 58
 date 59
 diagnostics 60
 high-availability initdead 61
 high-availability peer 62
 high-availability shared-ip 64
 high-availability start 65
 high-availability stop 66
 license 67
 management wireless 68
 ntp 69
 passwd 70
 ping 71
 poweroff controller 72
 reload 73
reload-management 74
setup 75
show alarm 77
show calendar 79
show controller 80
show controller cpu-utilization 83
show controller file systems 84
show controller memory 86
show controller processes 87
show flash 89
show high-availability 90
show hostname 93
show license 94
show license-file 96
show log 97
show ntp-server 98
show syslog-file 99
show syslog-host 100
show syslog-table 101
show timezones 102
statistics period 103
syslog-host 104
telnet 105
timezone 106
trace route 108

Chapter 5 Interface and IP Commands 109
ip address 110
ip address dhcp 112
ip default-gateway 113
ip dhcp-pass through 115
ip dhcp-server 116
ip dns-server 117
ip domain name 118
ip ftp 119
ip scp 120
ip sftp 121
ip udp-broadcast 122
show interfaces FastEthernet ap 124
show interfaces FastEthernet controller 127
show interfaces FastEthernet statistics 130
show ip 131

Chapter 6 VLAN Commands. ... 133
 show vlan 134
 vlan 136

Chapter 7 Security Commands. ... 137
 8021x-network-initiation 138
 allowed-l2-modes 139
 captive-portal 141
 clear certificates extension-type 142
 clear certificates name 143
 description 144
 encryption-modes ccmp 145
 encryption-modes tkip 146
 encryption-modes wep128 147
 encryption-modes wep64 148
 import certificate pem 149
 import certificate pfx 150
 ip-address 151
 key 152
 mac-delimiter 153
 macfiltering 154
 port 155
 psk key 156
 radius-profile 158
 radius-server primary 160
 radius-server secondary 161
 reauth 162
 rekey multicast-enable 163
 rekey period 164
 security-profile 165
 shared-authentication 167
 show aaa statistics 168
 show certificate detail 169
 show certificate installed 171
 show radius-profile 172
 show security-profile 173
 show ssl-server 175
 show web 176
 ssl-server associate pem 177
Chapter 8 **ESSID Commands** .. 187

accounting interim-interval 188
accounting primary-radius 189
accounting secondary-radius 190
ap-discovery join-ess 192
ap-discovery join-virtual-ap 193
base-tx-rates 195
beacon dtim-period 197
beacon period 198
calls-per-bss 199
ess-ap 200
essid 201
l2bridge ipv6 202
multicast-enable 203
publish-essid 204
remote-ap-enable 205
security-profile 206
show ess-ap 207
show essid 208
ssid 210
silent-client-enable 211
supported-tx-rates 212
vlan name 214
vlan support 215

Chapter 9 **Access Point and Radio Commands** 217

admin-mode 219
antenna-property 220
antenna-selection 221
ap 222
ap-redirect 224
auto-ap-upgrade 225
autochannel 227
boot-script 228
building 229
channel 230
connectivity 232
contact 234
controller domainname 235
controller hostname 236
controller ip 237
dataplane-mode 238
description 240
fixed-channel 241
floor 242
high-density-enable 243
hostname 244
interface Dot11Radio 245
led 247
link-probing-duration 248
location 249
mac-address 250
mode 251
model 252
power local 253
preamble-short 254
protection-cts-mode 255
protection-mode 256
rf-mode 258
show ap 259
show ap-connectivity 261
show ap-discovered 263
show ap-redirect 265
show ap-siblings 266
show ap-swap 268
show ess-ap 269
show interfaces Dot11Radio 270
show interfaces Dot11Radio antenna-property 272
show interfaces Dot11Radio statistics 274
show regulatory-domain 277
show statistics top10-ap-problem 278
show statistics top10-ap-talker 279
show topoap 281
show topoapap 282
Chapter 10 Rogue AP Detection Commands .. 287
rogue-ap acl 288
rogue-ap aging 289
rogue-ap assigned-aps 290
rogue-ap blocked 291
rogue-ap detection 293
rogue-ap mitigation 294
rogue-ap mitigation-frames 295
rogue-ap operational-time 296
rogue-ap scanning-channels 297
rogue-ap scanning-time 299
show rogue-ap acl 300
show rogue-ap blocked 301
show rogue-ap globals 302
show rogue-ap-list 303

Chapter 11 MAC Filtering Commands ... 305
access-list deny 306
access-list deny import 308
access-list permit 310
access-list permit import 311
access-list radius-server 313
access-list state 315
show access-list deny 317
show access-list permit 318
show access-list state 319

Chapter 12 Quality-of-Service Commands ... 321
action 322
avgpacketrate 323
droppolicy 324
dscp 325
dstip 326
dstmask 327
dstport 328
peakrate 329
priority 330
qoscodec 331
qosrule 335
qosvars admission 338
qosvars bwscaling 340
qosvars cac-deauth 341
qosvars calls-per-ap 342
qosvars calls-per-bssid 343
qosvars drop-policy 344
qosvars enable 345
qosvars load-balance-overflow 346
qosvars max-stations-per-ap 347
qosvars max-stations-per-bssid 348
qosvars no enable 349
qosvars sip-idle-timeout 350
qosvars station-assign-age 351
qosvars tcpttl 352
qosvars ttl 353
qosvars udpttl 354
rspecrate 355
rspecslack 356
srcip 357
srcmask 358
srcport 359
show phones 360
show phone-calls 361
show qoscodec 362
show qosflows 364
show qosrule 366
show qosstats 369
show qosvars 370
show statistics call-admission-control 372
tokenbucketrate 373
tokenbucketsize 374
trafficcontrol-enable 375
Chapter 13 **SNMP Commands.** ... 377
reload snmp 378
show snmp-community 379
show snmp-trap 380
snmp-server community 381
snmp-server contact 382
snmp-server description 383
snmp-server location 384
snmp-server trap 385

Chapter 14 **Station Commands** ... 387
no station 388
show ap-assigned 389
show dot11 associations 391
show dot11 statistics client-traffic 392
show station 394
show statistics station-per-ap 398
show statistics top10-station-problem 400
show statistics top10-station-talker 402
show topostaap 404
show topostation 405

Chapter 15 **Troubleshooting Commands** 407
analyze-capture 408
capture-packets 409
debug controller 415
debug module 416
diagnostics 417
diagnostics-controller 418
remote-log 419
About This Guide

This guide provides a detailed description of the Meru Wireless LAN System operating system, referred to as the System Director. System Director commands that are available at the Meru Controller Command Line Interface (CLI). Each chapter of this reference contains a list of related commands, such as commands that are used to manage APs or configure system security. At the end of the guide is an alphabetical listing of all commands that are contained within the System Director. Clicking a command’s page number in that listing will take you to the command entry.

This book is to be used as a reference for individual commands. To understand how the various commands are used together to accomplish system tasks such as setting up system security for a wireless LAN or configuring an ESSID, refer to the companion guide, the Meru Wireless LAN System. There you will find a chapter structure that mirrors that of this book, with background reference information, detailed explanations, and procedures for performing system configuration and maintenance tasks.

Audience

This guide is intended for network administrators configuring and maintaining the Meru Wireless LAN System. Familiarity with the following concepts is helpful when configuring the Meru Wireless LAN System:

- Network administration, including:
 - Internet Protocol (IP) addressing and routing
 - Dynamic Host Configuration Protocol (DHCP)
 - Configuring Layer 2 and Layer 3 switches (if required by your switch)
- IEEE 802.11 (Wi-Fi) concepts, including:
 - ESSIDs
 - WEP
- Network Security (optional)
 - 802.1X
 - RADIUS
 - X.509 certificates
Other Sources of Information

Additional information is available on the Meru web site and in the following Meru publications and external references.

Meru Publications

- Meru Wireless LAN System Release 3.3 Release Note
- Meru Wireless LAN System Getting Started Guide
- Meru Access Point and Radio Switch Installation Guide
- Meru Controller Installation Guide
- Meru Wireless LAN System Configuration Guide

External References

Guide Typographic Conventions

This guide uses the following typographic conventions in paragraph text to help you identify information:

Bold text

Identifies commands and keywords in syntax descriptions that are entered literally.

Italic text

Used for new terms, emphasis, and book titles; also identifies arguments for which you supply values in syntax descriptions.

Courier font

Identifies file names, folder names, computer screen output, and text in syntax descriptions that you are required to type.

help

Denotes a cross-reference link to a command. Clicking the link takes you to the command reference entry.

Ctrl-

Denotes that the Ctrl key should be used in conjunction with another key, for example, Ctrl-D means hold down the Ctrl and press the D key. Keys are shown in capitals, but are not case sensitive.
Note: Provides extra information, tips, and hints regarding the topic.

Caution! Identifies important information about actions that could result in damage to or loss of data, or could cause the application to behave in unexpected ways.

Warning! Identifies critical information about actions that could result in equipment failure or bodily harm.

Syntax Notation

In example command syntax descriptions and command examples, the following text elements and punctuation are used to denote user input and computer output for the command. In general, Courier font is used for command input and output at the command line; **bold** indicates required text and *italics* indicate values that are to be replaced.

bold Required command, keywords, and punctuation.

italic Arguments or file names where you substitute a value.

no The optional no form of the command disables the feature or function.

[] Optional elements are enclosed by square brackets.

{ } Braces indicates that one of the enclosed elements must be used.

| Choices among elements are separated by vertical bars.

[{}] A required choice within an optional element.

... The preceding argument can be repeated.

The following figure shows a sample of syntax notation.

```
[no] action target {keyword|keyword} [argument ...]
```

- One or more repeated values
- Choose between the enclosed elements
- Keyword or command within a submode.
- Command or action. In some cases, `action` takes you to another command mode.
- The optional `no` form disables the command; without the `no`, enables or re-enables.

Note: Many commands have a default setting or value, listed in the Default section of the command page.
Contacting Meru

You can visit the Meru Networks web site on the Internet at this URL:

http://www.merunetworks.com

Customer Services and Support

For assistance, contact Meru Customer Services and Support 24 hours a day at 1-888-637-8952 (1-888-Meru-WLA(N)) or 1-408-215-5305. Email can be sent to support@merunetworks.com.

Meru Customer Services and Support provide end users and channel partners with the following:

- Telephone technical support
- Software update support
- Spare parts and repair service
Chapter 1

Key Concepts

This chapter presents tips for working with the System Director command line interface (CLI). It describes the various command modes, provides some tips for getting help, using the history functions, and customizing the prompt and terminal characteristics. The following sections are included in this guide:

- Getting Started
- CLI Command Modes
- Command Line-Only Commands
- Abbreviating Commands
- Using No and Default Forms of Commands
- Getting Help
- Using Command History
- Finding Words in show Command Output
- Customizing the CLI Prompt
- Manipulating Terminal Characteristics
- Ending a Session

Getting Started

To start using the Command Line Interface:

1. Connect to the Meru Controller using the serial console or Ethernet port, or remotely with a telnet or SSH connection once the controller has been assigned an IP address.

2. At the login prompt, enter a user ID and password. By default, the guest and admin user IDs are configured.
 — If you log in as the user admin, with the admin password, you are automatically placed in privileged EXEC mode.
 — If you log in as the user guest, you are placed in user EXEC mode. From there, you must type the enable command and the password for user admin before you can enter privileged EXEC mode.

3. Start executing commands.
The CLI is divided into different command modes, each with its own set of commands and in some modes, one or more submodes. Entering a question mark (?) at the system prompt provides a list of commands available at the current mode.

User EXEC Mode

When you start a session on the Meru Controller, you begin in user mode, also called user EXEC mode. Only a subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time and display-only commands, such as `show` commands, which list the current configuration information, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

- **Access method:** Begin a session with the controller as the user `guest`.
- **Prompt:** `default>`
- **Exit method:** Enter `exit` or `quit`.
- **Summary:** Use this mode to change console settings, obtain system information like showing system settings and verifying network connectivity.

Privileged EXEC Mode

To access all the commands in the CLI, you need to be in privileged EXEC mode. You can either log in as `admin` or enter the `enable` command at the user EXEC mode, and provide the `admin` password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

- **Access method:** Enter `enable` while in user EXEC mode, or log in as the user `admin`.
- **Prompt:** `default#`
- **Exit method:** Enter `disable`.
- **Summary:** Use this mode to manage system files and perform some troubleshooting. Change the default password (from global configuration mode) to protect access to this mode.

Global Configuration Mode

You make changes to the running configuration by using the global configuration mode and its many submodes. Once you save the configuration, the settings are stored and restarted when the controller reboots.

From the global configuration mode, you can navigate to various submodes (or branches), to perform more specific configuration functions. Some examples of configuration submodes are security, qosrules, vlan, and so forth.
Command Line-Only Commands

Many CLI commands have an equivalent functionality in the Web Interface, so you can accomplish a task using either interface. The following lists commands that have no Web Interface functionality.

EXEC Mode Commands

- configure terminal
- no history
- no prompt
- no terminal length |width
- help
- cd
- copy (including copy running-config startup-config, copy startup-config running-config and all local/remote copy)
- delete flash: *image*
- delete *filename*
- dir [*dirname*]
- debug
- disable
- enable
- exit
- quit
- more (including more running-config, more log *log-file*, more running-script)
- prompt
- rename
- terminal history|size|length|width
Command Line-Only Commands

- traceroute
- show history
- show running-config
- show terminal

Config Mode Commands

- do
- ip username ftp|scp|sftp
- ip password ftp|scp|sftp
- show context

Commands that Invoke Applications or Scripts

- calendar set
- timezone set|menu
- date
- capture-packets
- analyze-capture
- debug
- diagnostics[-controller]
- ping
- pwd
- shutdown controller force
- reload controller default
- run
- setup
- sup-cli
- upgrade
- downgrade
- licensing-management
- poweroff
- show calendar
- show timezones
- show file systems
- show memory
- show cpu-utilization
Abbreviating Commands

You only have to enter enough characters for the CLI to recognize the command as unique. This example shows how to enter the `show security` command, with the command `show` abbreviated to `sh`:

```
controller# sh security-profile default
```

Security Profile Table

<table>
<thead>
<tr>
<th>Security Profile Name</th>
<th>: default</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 Modes Allowed</td>
<td>: clear</td>
</tr>
<tr>
<td>Data Encrypt</td>
<td>: none</td>
</tr>
<tr>
<td>Primary RADIUS Profile Name</td>
<td>:</td>
</tr>
<tr>
<td>Secondary RADIUS Profile Name</td>
<td>:</td>
</tr>
<tr>
<td>WEP Key (Alphanumeric/Hexadecimal)</td>
<td>: *****</td>
</tr>
<tr>
<td>Static WEP Key Index</td>
<td>: 0</td>
</tr>
<tr>
<td>Re-Key Period (seconds)</td>
<td>: 0</td>
</tr>
<tr>
<td>Enable Multicast Re-Key</td>
<td>: off</td>
</tr>
<tr>
<td>Enable Captive Portal</td>
<td>: disabled</td>
</tr>
<tr>
<td>802.1X Network Initiation</td>
<td>: off</td>
</tr>
<tr>
<td>Enable Shared Key Authentication</td>
<td>: off</td>
</tr>
<tr>
<td>Pre-shared Key (Alphanumeric/Hexadecimal)</td>
<td>: *****</td>
</tr>
<tr>
<td>Enable Reauthentication</td>
<td>: off</td>
</tr>
<tr>
<td>MAC Filtering</td>
<td>: on</td>
</tr>
</tbody>
</table>
Using No and Default Forms of Commands

Almost every configuration command has a **no** form. In general, use the **no** form to
1. Disable a feature or function.
2. Reset a command to its default values.
3. Reverse the action of a command.
4. Use the command without the **no** form to reenable a disabled feature or to reverse the action of a **no** command.

Configuration commands can also have a **default** form. The **default** form of a command returns the command setting to its default. Most commands are disabled by default, so the **default** form is the same as the **no** form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the **default** command enables the command and sets variables to their default values. The reference page for the command describes these conditions.

Getting Help

Entering a question mark (?) at the system prompt displays a list of commands for each command mode. When using context-sensitive help, the space (or lack of a space) before the question mark (?) is significant. To obtain a list of commands that begin with a particular character sequence, enter those characters followed immediately by the question mark (?). Do not include a space. This form of help is called word help, because it completes a word for you.

To list keywords or arguments, enter a question mark (?) in place of a keyword or argument. Include a space before the ?. This form of help is called command syntax help, because it reminds you which keywords or arguments are applicable based on the command, keywords, and arguments you already have entered.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(prompt)# help</td>
<td>Displays a brief description of the help system.</td>
</tr>
<tr>
<td>(prompt)# abbreviated-command?</td>
<td>Lists commands in the current mode that begin with a particular character string.</td>
</tr>
<tr>
<td>(prompt)# abbreviated-command<Tab></td>
<td>Completes a partial command name</td>
</tr>
<tr>
<td>(prompt)# ?</td>
<td>Lists all commands available in command mode</td>
</tr>
<tr>
<td>(prompt)# command?</td>
<td>Lists the available syntax options (arguments and keywords) for the command.</td>
</tr>
<tr>
<td>(prompt)# command keyword ?</td>
<td>Lists the next available syntax for this command.</td>
</tr>
</tbody>
</table>
The prompt displayed depends on the configuration mode.

You can abbreviate commands and keywords to the number of characters that allow a unique abbreviation. For example, you can abbreviate the `configure terminal` command to `conf t`.

Entering the `help` command will provide a description of the help system. This is available in any command mode.

Using Command History

The CLI provides a history of commands that you have entered during the session. This is useful in recalling long and complex commands, and for retyping commands with slightly different parameters. To use the command history feature, you can perform the following tasks:

- Set the command history buffer size
- Recall commands
- Disable the command history feature

Setting the Command History Buffer Size

By default, the CLI records ten command lines in its history buffer. To set the number of command lines that the system will record during the current terminal session, and enable the command history feature, use the `terminal history` command:

```
controller# terminal history [size n]
```

The `terminal no history size` command resets the number of lines saved in the history buffer to the default of ten lines or number specified by `size`.

To display the contents of the history buffer, type `default history`:

```
controller# default history
```

To display the contents of the history buffer, type `terminal history`

```
controller# terminal history
  7 interface Dot11Radio 1
  8 end
  9 interface Fast Ethernet controller 1 2
 10 show interface Dot11Radio 1
 11 end
 12 show interfaces FastEthernet controller 1 2
 13 sh alarm
 14 sh sec
 15 sh security
```
Finding Words in show Command Output

Recalling Commands

To recall commands from the history buffer, use one of the following commands or key combinations:

- **Ctrl-P** or **Up Arrow** key. This recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.

- **Ctrl-N** or **Down Arrow** key. Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up Arrow key.

- **!number**. Execute the command at the history list number. Use the terminal history or show history commands to list the history buffer, then use this command to re-execute the command listed by its sequence number.

- To list the contents of the history buffer, use the **show history** command:

  ```
  controller# show history
  ```

Disabling the Command History Feature

The terminal history feature is automatically enabled. To disable it during the current terminal session, type **no terminal history** in either privileged or non-privileged EXEC mode:

```
controller# no terminal history
```

Finding Words in show Command Output

To quickly locate a word in the output of any **show** command, use the following command:

```
show argument | grep "string"
```

For this feature to work, only one **show** command can be the input to the **grep** and the **show** command cannot have arguments (for example, the form of the command such as **show ap 54**. The "string" is a literal, case-sensitive word to search for (such as AP-54), and must be enclosed in double quotation marks. Only one string search can be performed per command line.

As an example, to search for and display the entry for AP-54 in the output of the **show ap** command, use the command:

```
controller# show ap | grep "AP-54"
```

<table>
<thead>
<tr>
<th>AP ID</th>
<th>AP Name</th>
<th>Serial Number</th>
<th>Op State</th>
<th>Availability</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>AP-54</td>
<td>00:0c:e6:00:3e:a8</td>
<td>Disabled</td>
<td>Offline</td>
<td>3.1.4-25 None</td>
</tr>
<tr>
<td></td>
<td>AP201</td>
<td>Local</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP Table(1 entry)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Customizing the CLI Prompt

Default CLI Prompt

By default, the CLI prompt consists of the system name followed by an angle bracket (>) for EXEC mode or a pound sign (#) for privileged EXEC mode.

Commands to Customize CLI Prompt

To customize the CLI prompt for your system, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prompt string</code></td>
<td>Customizes the CLI prompt.</td>
</tr>
<tr>
<td><code>no prompt</code></td>
<td>Disables the display of the CLI prompt.</td>
</tr>
<tr>
<td><code>default prompt</code></td>
<td>Sets the prompt to the default, which is the hostname.</td>
</tr>
</tbody>
</table>

Manipulating Terminal Characteristics

Displaying Terminal Settings

To display the current terminal settings, including the screen length and width, type:

```
controller> show terminal
Terminal Length:     0
Terminal Width:      80
History Buffer Size: 10
```

Setting Terminal Screen Length and Width

By default, the terminal length is set to 0 rows, and the width is set to 80 columns. To override this default setting, and set the number of lines or character columns on the current terminal screen for the current session, use the following commands in EXEC mode:

```
controller> terminal length screen-length
controller> terminal width characters
```
Ending a Session

To reset the terminal length and width to the default values, use the default command:

```
controller> default terminal length
controller> default terminal width
```

Setting the terminal length to a non-zero value turns on paging. When the output length exceeds the terminal length, the output is paused and a `---More---` is displayed:

1. If the user presses the space bar at the `---More---` prompt, another page of output is displayed.
2. If the user presses the ENTER key at the `---More---` prompt, a single line of output is displayed.
3. If the user presses any other character at the `---More---` prompt, this signifies the end of output and the command prompt is displayed.

Ending a Session

To end a session, use the following command in either user or privileged EXEC mode:

```
controller> exit
```
The commands in this chapter perform configuration for the user interface, such as changing the prompt, and terminal history and display features. Additionally, commands for working with the interface such as getting help, and exiting and entering command levels are described.

- ?
- disable
- do
- enable
- end
- exit
- help
- prompt
- quit
- show history
- show terminal
- terminal history
- terminal history size
- terminal length
- terminal width
Displays a list of applicable subcommands at the command level used.

Syntax

```
Command Mode
```

Default

None

Usage

Help is available at any level of the CLI by typing the `?`. At each level, use `?` to view a list of all commands. Use `?` after each command to see a list of applicable subcommands.

Examples

```
mc1000> ?
```

debug Turns on debugging.
default Reset to default values.
enable Enables privileged mode.
extit Exit the CLI.
help Displays help information.
no Disables various parameters.
prompt Customizes the CLI prompt.
quit Exit the CLI.
show Displays various system parameters.
terminal Displays or sets terminal characteristics.

Related Commands

help
disable

Exits privileged EXEC mode to user EXEC mode.

Syntax

```
disable
```

Command Mode

User EXEC

Default

None

Usage

When working in privileged EXEC mode, use the `disable` command to enter user EXEC mode.

Examples

The following command exits privileged EXEC mode and enters user EXEC mode:

```
mc1000# disable
mc1000>
```

Related Commands

enable
do

Executes a CLI command from any command mode.

Syntax

```plaintext
do command
```

- **command**: CLI command to be executed.

Command Mode

All configuration modes.

Default

None

Usage

Use the `do` command to run an EXEC-level command (such as `copy`, `default`, or `show`) from global configuration mode or any of the configuration submodes.

Examples

The following command saves the current configuration to the file `startup-config` without having to return to the Privileged EXEC mode:

```
mc1000(config)# do copy running-config startup-config
```

The following command shows the IP settings for the controller:

```
mc1000(config)# do show ip
```

<table>
<thead>
<tr>
<th>ID</th>
<th>IP Address</th>
<th>NetMask</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192.168.10.2</td>
<td>255.255.255.0</td>
<td>Static</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IP Addresses(1 entry)</td>
</tr>
</tbody>
</table>

```
mc1000(config)#
```
enable

Enters privileged EXEC mode.

Syntax

```
enable
```

Command Mode

User EXEC

Default

None

Usage

Use the `enable` command in user EXEC mode to enter privileged EXEC mode, which allows you to perform some configuration tasks and enter configuration submodes.

Examples

The following command, issued in user EXEC mode, enters privileged EXEC mode after you enter the administrative password:

```
mc1000> enable
Password:
mc1000#
```

Related Commands

`disable`
end

Exits configuration modes and enters privileged EXEC mode.

Syntax

```
end
```

Command Mode

Default: None

Usage

Use the **end** command in most configuration mode to exit that configuration mode and enter privileged EXEC mode.

Examples

The following exits the security profile and global configuration mode, and takes you to Privileged EXEC mode:

```
mc1000(config-security)# end
mc1000#

mc1000(config)# end
mc1000#
```

Related Commands

```
exit
```
exit

In any configuration mode, exits that mode and enters the next-highest mode, or in user EXEC mode, exits the CLI.

Syntax

`exit`

Command Mode

All

Default

None

Usage

The `exit` command behaves differently, depending on which command mode you are in. If you are in any configuration mode, use the `exit` command to exit the mode and enters the next-highest mode. If you are in user or privileged EXEC mode, use the `exit` command to quit the CLI.

Examples

The following command exits the security profile configuration mode and enters the next-highest mode, global configuration mode:

```
mc1000(config-security)# exit
mc1000(config)#
```

Related Commands

`quit`
help

Displays help information that describes each command.

Syntax

```
help [command]
```

command Optional. Displays help for the specified command.

Command Mode

All

Default

Lists the commands available from the current command level.

Usage

The `help` command displays a list of system commands for the current command mode. The `help` command behaves differently than the `?` command, displaying a larger list of commands and subcommands. Typing `help` before a command gives a description of that command.

Examples

```
mc1000# help cd
cd:
Sets the current working directory.

mc1000#
```

The following example shows the commands available from the `radius-profile` command submode:

```
meru-wifi(config-radius)# help
default          Set radius profile parameters to default value.
description     Specifies the radius node.
do              Executes an IOSCLI command.
end              Save changes, and return to privileged EXEC mode.
exit             Save changes, and return to global configuration mode.
help             Displays help information.
ip-address      Configures the IP address.
key              Configures the secret key.
mac-delimiter    Configures the MAC Delimiter.
no               Disabling radius profile parameters.
port             Configures port number.
```

Related Commands

`?`
prompt

Changes the CLI prompt.

Syntax

`prompt` `prompt-name`

prompt-name
The name of the new prompt.

Command Mode

Privileged EXEC

Default

The default prompt name is *default*.

Usage

Use this command to change the prompt name on the CLI.

Examples

The following command changes the prompt name from *default* to *mc1000*:

```
default# prompt mc1000
mc1000#
```
quit

Exits the CLI.

Syntax

```
quit
```

Command Mode

User EXEC

Default

None

Usage

Use the `quit` command to exit the CLI.

Examples

The following command exits the CLI:

```
default# quit
```

Related Commands

`exit`
show history

Displays a list of the commands last issued in this session.

Syntax

```
show history
```

Command Mode

Global configuration

Default

The default history size is 10.

Usage

Use the **show history** command to list the commands you have recently entered. The number of commands that the history buffer lists is determined by the **terminal history size** command.

Examples

The following command displays the last 10 commands entered during this session:

```
default> show history
  26  access-list permit import acl
  27  exit
  28  show access-list permit
  29  show access-list state
  30  configure terminal
  31  access-list deny on
  32  exit
  33  show access-list state
  34  show access-list deny
  35  disable
default>
```

Related Commands

terminal history size
show terminal

Displays terminal settings.

Syntax

```
show terminal
```

Command Mode

User EXEC

Default

None

Usage

Displays the current settings for the terminal, including the length, width and buffer size.

Examples

The following command displays the terminal settings:

```
mc1000# show terminal
Terminal Length:  50
Terminal Width:   80
History Buffer Size:  10
mc1000#
```

Related Commands

- `terminal history`
- `terminal history size`
terminal history

Displays a history of commands entered.

Syntax

```text
terminal history
no terminal history
```

Command Mode

User EXEC

Default

The default history buffer size is 10.

Usage

Shows the 10 most recent commands at this terminal. Use the no form to show zero entries.

Examples

The following shows the last 10 entries at this terminal:

```text
mc1000# terminal history
  15  prompt default
  16  show terminal
  17  show terminal
  18  terminal history
  19  show terminal
  20  terminal
  21  show terminal
  22  show terminal
  22  terminal history
  23  show terminal

mc1000#
```

Related Commands

- show terminal
- terminal history size
terminal history size

Changes the number of lines recorded in the history buffer.

Syntax

```
terminal history size historysize

no terminal history
```

historysize
Number of lines recorded in the history buffer. Valid value is from 0 to 1,000.

Command Mode

User EXEC

Default

The default history size is 10.

Usage

Changes the number of lines displayed at the terminal. Zero (0) reduces the number of history lines displayed to “none.” The command `no terminal history` disables the history function.

Examples

The following command changes the history buffer size to save the last 33 commands:

```
mc1000# terminal history size 33
mc1000#
```

Related Commands

`show terminal`
`terminal history`
terminal length

Adjusts the number of lines that display on the terminal.

Syntax

```
terminal length length
```

`length` Number of lines displayed on the terminal. The valid range is 0 to 256.

Command Mode

User EXEC

Default

Zero (0) lines.

Usage

Displays the number of rows on the terminal. Setting this parameter to 0 displays line by line. Numbers greater than 0 display in a block or group length.

Examples

```
mc1000# terminal length 100
mc1000#
```

Related Commands

`terminal width`
terminal width

Adjusts the number of columns that display on the terminal.

Syntax
`terminal width width`

width
Number of columns displayed on the terminal. The valid range is 0 80.

Command Mode
User EXEC

Default
Zero (0) lines.

Usage
Displays the number of columns on the terminal. Setting this parameter to 0 displays column by column.

Examples
```
mc1000# terminal width 60
mc1000#
```

Related Commands
`terminal length`
Chapter 3

File Management Commands

The commands in this chapter are used to manage the system files, including the system image and backup configuration files. Included are the commands to save configurations, upgrade and downgrade images, and show information to help understand and manage the configuration.

- cd
- copy
- copy running-config
- delete
- dir
- downgrade
- more
- pwd
- reload
- rename
- run
- show controller file systems
- show flash
- show running-config
- show startup-config
- show scripts
- upgrade ap
- upgrade controller
- upgrade system
cd

Sets the current working directory.

Syntax

```
    cd [directory]
```

- `directory`: Optional. Name of new directory to set as current working directory.

Command Mode

Privileged EXEC

Default

The default working directory is `images`.

Usage

Typing `cd` by itself changes to the default working directory (`images`). You can also change to `ATS/scripts`, which contain the AP boot scripts, and `capture`, which contains the saved packet capture files.

Use the `cd` command to set the current working directory to one of the following directories:

- `ATS/scripts`: The directory containing AP boot scripts.
- `capture`: The directory containing packet capture files.
- `images`: The directory containing upgrade images.

Examples

The following commands change to the directory `ATS/scripts`, verifies the change, and then goes back to the default `/images` directory:

```
mc1000# cd ATS/scripts
mc1000# pwd
ATS/scripts
mc1000# cd
mc1000# pwd
images
```

Related Commands

- `dir`
- `pwd`
copy

Copies files locally and remotely.

Syntax

- `copy filename ftp://username[:password]@server/filename` (copy file to remote location)
- `copy ftp://username[:password]@server/filename` (copy file to local location)
- `copy filename scp://username[:password]@server/directory/filename` (copy file to remote location)
- `copy sftp://username[:password]@server/filename` (copy remote file to local location)
- `copy filename tftp://server/filename` (copy file to remote location)
- `copy tftp://server/filename` (copy remote file to local location)

- `filename` | . | Name of the remote or local file.
- `ftp://username[:password]@server` | Use FTP to transfer the file between the controller and server, using a valid username on that server. The password can be included or a prompt for the password will be provided.
- `scp://username@server` | Use SCP to transfer the file between the controller and server, using a valid username on that server.
- `sftp://username[:password]@server` | Use SFTP to transfer the file between the controller and server, using a valid username on that server. The password can be included or a prompt for the password will be provided.
- `tftp://server/` | Use TFTP to transfer the file between the controller and server (no username needed).

Command Mode

Privileged EXEC

Default

The default is the current running configuration

Usage

On a remote file system with an FTP or SSH server, copy files to or from the controller.

Examples

The first command copies the file `dflt_backup.dbu` to the remote location `user1@server1/home/backup/` using FTP. The second command copies the remote backup file back into the local directory (using the `. (dot)` which is a shortcut for the copied file name (`dflt_backup.dbu`).

```
mc1000# copy dflt_backup.dbu
    ftp://user1@server1/home/backup/dflt_backup.dbu
FTP password:
```
mc1000#

mc1000# copy ftp://user1@server1/home/backup/dflt_backup.dbu .
FTP password:
mcl000#
copy running-config

Copies the running configuration to local flash or remote system.

Syntax

```
copy running-config startup-config
copy running-config ftp://username[:password]@server/directory/filename
copy running-config scp://username[:password]@server/directory/filename
copy running-config tftp://server/directory/filename
```

- **ftp://username[:password]@server**
 - Use FTP to transfer the file between the controller and server, using a valid username on that server. The password can be included or a prompt for the password will be provided.

- **scp://username@server**
 - Use SCP to transfer the file between the controller and server, using a valid username on that server.

- **tftp://server/**
 - Use TFTP to transfer the file between the controller and server (no username needed).

- **startup-config**
 - Start up configuration.

- **filename**
 - File name of the file to use as the output of or input to the running-config.

Command Mode

Privileged EXEC

Default

The default is the current running configuration.

Usage

Use the `copy running-config` command to copy the current running configuration to the local flash configuration file that is started upon system bootup, `startup-config`, or to a remote server for use as a backup. When the remote server is used for the copy, the file can be transferred using FTP, SFTP, SCP, or TFTP. The destination filename is user-selectable.

This command also accepts a file name as input to the running-config, which changes the running configuration to the commands in the input file.

To retrieve the file from the remote location, use the `copy` command.

Examples

The following command copies the current running configuration to the location `user1@server1/home/backup/` using either FTP.

```
mc1000# copy running-config
ftp://user1:mypwd@server1/home/backup/running-config
```
Related Commands

- copy
delete

Deletes a file or upgrade image from the system.

Syntax

```
delete {filename | flash: filename}
```

- `filename` Name of file to delete.
- `flash: filename` Name of upgrade image to delete.

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to remove a file or an upgrade image. This command is helpful to delete older, unneeded images that have been downloaded into the images directory, and that take up unnecessary space on the flash card.

Check the contents of the images directory with the `dir` command or the `show flash` command.

Examples

The following command sequence lists the contents of the `images` directory, deletes the file `dflt_backup.mbu`, and relists the contents of the directory.

```
mc1000# cd capture
mc1000# pwd
/capture
mc1000# dir

dir

total 1

-rw-r--r-- 1 root root 28658 May 14 12:02
my_capture_file
```

```
mc1000# delete my_capture_file
mc1000# dir

total 0
```

The following command deletes the file `3.0-139` from flash memory:

```
mc1000# delete flash: 3.0-139
mc1000#
```
<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
</tr>
<tr>
<td>pwd</td>
</tr>
<tr>
<td>show flash</td>
</tr>
</tbody>
</table>
dir

Displays directory contents.

Syntax

dir [directory] [ftp_url]

directory Optional. Name of the directory to display.
ftp_url Optional. A URL for an FTP site.

Command Mode
Privileged EXEC

Default
Lists the current working directory.

Usage
Use dir to display the long listing of the contents of the current directory. Use the optional directory argument to specify another directory. Optional directories include:

- ATS/scripts: The directory containing the AP bootup scripts.
- backup: The directory containing the backup databases.
- capture: The directory containing packet capture files.
- images: The directory containing the system images.
- scripts: The directory containing the controller scripts.
- ftp_URL: The URL for an FTP location.

Examples
The following commands list the name of the current directory and display its contents.

```
mc1000# pwd
images

mc1000# dir
total 1
drwxrwxr-x 5 522 522 1024 May 12 18:47 meru-3.0-126
```

Related Commands
pwd
downgrade

Downgrades the system

Syntax

downgrade system version

Command Mode

Privileged EXEC

Default

Downgrades the system image.

Usage

Use the `downgrade system` command to revert to a system image that was previously installed on the system. A downgrade affects the controller and all APs.

Use the `show flash` command to view a list of system images that you can downgrade to.

Examples

The following command downgrades the system.

```
mc1000# downgrade system 3.2-116
```

Related Commands

- `show flash`
- `upgrade system`
more

Displays detailed file or system information

Syntax

```
more {running-config | startup-config | running-script | file pathname | log}
```

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to page through the various details about the system configuration, as contained in the `running-config`, `startup-config`, and system log (`syslogd.log`) files. With the `file` keyword, specify the complete pathname of the file to be viewed.

The *more running-config* command is a synonym for the *show running-config* command.

To abort this command, press Ctrl-C.

Examples

The following is a partial display of the `running-config` output.

```
default# more running-config
    configure terminal
    no ip dhcp-passthrough
    access-list state disabled
    access-list radius-server ip-address 0.0.0.0
    access-list radius-server port 1812
    access-list radius-server mac-delimiter hyphen
    audit period 60
    auto-ap-upgrade enable
    optimization none
    hostname meru-wifi
    ip dhcp-server 10.0.0.10
    ip address 192.168.10.2 255.255.255.0
    ip default-gateway 192.168.10.1
    ip domainname 10.0.0.10
    qosvars admission admitall
    qosvars ttl 0
    qosvars udpttl 0
    qosvars tcpttl 0
    qosvars enable
    qosvars bwscaling 100
    qosvars intercell-periodicity 30
    qosvars drop-policy head
    rogue-ap detection
```
rogue-ap acl 00:0c:e6:02:9e:6f
rogue-ap acl 00:0c:e6:03:5f:67
rogue-ap acl 00:0c:e6:04:5f:67
rogue-ap acl 00:0c:e6:05:b0:7a
rogue-ap acl 00:0c:e6:06:26:df
rogue-ap acl 00:0c:e6:07:17:d5
rogue-ap acl 00:0c:e6:08:e9:29

Related Commands

show running-config
pwd

Displays the current working directory.

Syntax

```plaintext
pwd
```

Command Mode

Privileged EXEC

Default

The current working directory.

Usage

Use this command to see the full pathname of the current working directory.

Examples

```plaintext
mc1000# pwd
images
mc1000#
```

Related Commands

```plaintext
dir
```
reload

Reboots the Meru Controller and/or the specified AP.

Syntax

```
reload ap id | all | controller | default
```

- **ap id**
 - The AP with the identifier `id` is rebooted.

- **all**
 - The Meru Controller and all the APs are rebooted, using the current startup configuration.

- **controller**
 - The Meru Controller is rebooted, using the current startup configuration.

- **default**
 - The Meru Controller and all the APs are rebooted at the factory default startup configuration.

Command Mode

Privileged EXEC

Default

Usage

Use this command to reboot the controller and/or specific APs, or reboot to the factory defaults with the `default` option.

Examples

The following command reboots the controller and all APs to the current startup configuration

```
mc1000# reload all
mc1000#
```

Related Commands
rename

Renames local files.

Syntax

```
rename source file_dst
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source</code></td>
<td>Name of original filename to rename</td>
</tr>
<tr>
<td><code>file_dst</code></td>
<td>Destination, or new name for filename</td>
</tr>
</tbody>
</table>

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to rename a file.

Examples

The following command renames the file `dflt_backup.mbu` to `default_backup.mbu`.

```
mc1000# rename dflt_backup.mbu default_backup.mbu
mc1000#
```

Related Commands

dir
run

Execute the named script.

Syntax

```
run script_file
```

script_file The full pathname of the script to execute.

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to run tests or other diagnostic applications and display their results on the screen.

Examples

```
mc1000# cd ATS/scripts
mc1000# dir
total 4
-rw-rw-r-- 1 root root 3922 Jan 13 10:05 jan01-config
mc1000# run jan01-config
```
show controller file systems

Displays information about the controller file system.

Syntax

```
show controller file systems
```

Command Mode

Privileged EXEC

Default

None

Usage

This command displays information about the system directories and file systems. It provides the following information:

Table 3: Output of show controller file systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filesystem</td>
<td>Displays the file system name. If the item is a directory, it displays none.</td>
</tr>
<tr>
<td>1K blocks</td>
<td>Shows the number of 1K byte blocks the file system or directory is configured to use.</td>
</tr>
<tr>
<td>Used</td>
<td>Show the number of 1K byte blocks the file system or directory currently uses.</td>
</tr>
<tr>
<td>Available</td>
<td>Show the number of 1K byte blocks the file system or directory has available to use (free space).</td>
</tr>
<tr>
<td>Use %</td>
<td>Show the percentage of available blocks the file system or directory currently uses.</td>
</tr>
<tr>
<td>Mounted on</td>
<td>Shows the mount point where the file system is mounted or lists the pathname of the directory.</td>
</tr>
</tbody>
</table>

Examples

The following command lists information about the system file system:

```
mc1000# show controller file systems
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hda2</td>
<td>428972</td>
<td>230456</td>
<td>175630</td>
<td>57%</td>
<td>/</td>
</tr>
<tr>
<td>none</td>
<td>4880</td>
<td>40</td>
<td>4840</td>
<td>1%</td>
<td>/dev/shm</td>
</tr>
<tr>
<td>none</td>
<td>19528</td>
<td>6256</td>
<td>13272</td>
<td>33%</td>
<td>/opt/meru/var/run</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>2944</td>
<td>6820</td>
<td>31%</td>
<td>/opt/meru/var/log</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>896</td>
<td>8868</td>
<td>10%</td>
<td>/tmp</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>0</td>
<td>9764</td>
<td>0%</td>
<td>/opt/meru/capture</td>
</tr>
</tbody>
</table>
mc1000#

Related Commands
show flash

Displays the system image filenames in flash memory.

Syntax
show flash

Command Mode
Privileged EXEC

Default
None

Usage
Use this command to see the flash image filenames.

Examples
The following command shows the flash image filenames.

```
mc1000# show flash
3.1-95
3.2-116

mc1000#
```
show running-config

Displays the current controller configuration.

Syntax

show running-config

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to view current system configuration parameters.

Related Commands

more
show startup-config

Displays the startup controller configuration.

Syntax

```
show startup-config
```

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to view the start-up system configuration parameters, which are implemented when the controller starts up.

Related Commands

`copy running-config`
show scripts

Displays valid AP scripts.

Syntax

show scripts

Command Mode

EXEC

Default

None

Usage

Use this command to display the name of valid AP scripts, for example a boot script for booting an AP. The following example describes copying a script, then shows the script after the copy is complete.

Examples

The following example describes copying a script, then shows the script after the copy is complete.

 mc1000# cd ATS/scripts
 mc1000# copy scp://jsmith@server2/home/jsmith/default-ap .
 SCP Password:
 default-ap 100% |***********************************| 3
 00:00
 mc1000# show scripts
 default-ap
 mc1000#
upgrade ap

Upgrades access point system image.

Syntax

```
upgrade ap {version | same}
```

- `version` - Version of System Director system image to be used during upgrade.
- `same [id | range | all]` - Upgrades the access point image to the same version of system software that the controller is running.
 - `id` - Upgrades the access point with the specified ID to the same version of system software that the controller is running.
 - `range` - Upgrades a range of APs, specified as a list using commas and dashes, without spaces or wildcards. AP IDs must be listed in ascending order.
 - `all` - Upgrades all access point image to the same version of system software that the controller is running.

Command Mode

Privileged EXEC

Default

None

Usage

Before you can upgrade an access point’s system image, you must transfer a compressed version of the image to the controller. The image must be in the images directory before you can upgrade. Use the `dir` command to see the images in that directory.

Transfer the new image file by using the `copy` command. For example, to use FTP to transfer the file, enter the following:

```
mc1000# copy ftp://jane@10.1.1.1/meru-3.2.tar .
```

If you have not configured a default FTP password using the `ip ftp password` command, you are prompted for a password.

To verify that the file was transferred properly, enter the following:

```
mc1000# show flash
3.2
```

When using the range option, the following types of
Examples

The following command upgrades to version 3.3 the access points with the IDs 1, 7, and 10:

```
mc1000# upgrade ap 3.3 1,7,10
```

The following command upgrades to version 3.3 the access points with the IDs 4 to 7, 10, and 12 to 20:

```
mc1000# upgrade ap 3.3 4-7,10,12-20
```

The following command upgrades all access points to the same version of the system image as the controller is running:

```
mc1000# upgrade ap same
```

This will overwrite all existing system images. Are you sure [y|n]?

```
y
```

You see status of the upgrade process. When the upgrade is successful, you see a message similar to the following:

```
Upgrading APs
  1 AP-1                      |=========================| Success
mc1000#
```

Related Commands

- upgrade system
upgrade controller

Upgrades system image for the controller.

Syntax

```
upgrade controller version [force]
```

- `version` Version of the system image to be used during upgrade.
- `force` Force the upgrade. Required to upgrade to a current running version, such as when you need to revert an applied patch.

Command Mode

Privileged EXEC

Default

None

Usage

Before you can upgrade a controller’s system image, you must transfer a compressed version of the image to the controller `/images` directory. Use the `dir` command to see the current controller directory.

Transfer the new image file by using the `copy` command. For example, to use FTP to transfer the file, enter the following:

```
mc1000# copy ftp://jane@10.1.1.1/meru-3.2.tar .
```

If you have not configured a default FTP password using the `ip ftp password` command, you are prompted for a password.

To verify that the file was transferred properly, enter the following:

```
mc1000# show flash
3.2
```

Examples

The following command upgrades the controller system image to version 3.2:

```
mc1000# upgrade controller 3.2
This will overwrite all existing system images. Are you sure [y|n]? 
  y
Upgrading Controller
Stopping System Director services ...
Upgrading the current configuration ...
Upgrade complete.

Broadcast message from root (pts/0) (Fri Mar 10 14:51:59 2004):
```
Now rebooting system...
The system is going down for reboot NOW!
default#

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>upgrade ap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>upgrade system</td>
</tr>
</tbody>
</table>
upgrade system

Upgrades the controller and all access points.

Syntax

upgrade system version

version Version of the system image to be used during upgrade.

Command Mode

Global configuration

Default

None

Usage

Before you can upgrade a system image, you must transfer a compressed version of the image to the controller /images directory. Use the dir command to see the current controller directory.

Transfer the new image file by using the copy command. For example, to use FTP to transfer the file, enter the following:

mc1000# copy ftp://jane@10.1.1.1/meru-3.2.tar .

If you have not configured a default FTP password using the ip ftp password command, you are prompted for a password.

To verify that the file was transferred properly, enter the following:

mc1000# show flash
3.0

Note: As part of the upgrade process, your system settings are copied to the file pre-upgrade.config and the system settings are reset to the default values. After the upgrade command completes, you can restore your system setting with the command copy pre-upgrade-config running-config.

Examples

The following command upgrades the controller and all access points to use the system image version 3.0:

mc1000# upgrade system 3.2
This will overwrite all existing system images. Are you sure [y|n]?
y
Upgrading APs
 1 AP-1 | Success
Upgrading Controller
Stopping System Director services ...
Upgrading the current configuration ...
Upgrade complete.

Broadcast message from root (pts/0) (Fri Mar 10 14:51:59 2004):

Now rebooting system...
The system is going down for reboot NOW!
mc1000#

Related Commands
upgrade ap
upgrade controller
Chapter 4
System Management Commands

The commands in this chapter are used to manage system, such as running the setup script, setting up a high-availability system, setting the system clock and timezone, and obtaining system and networking information.

- audit period
- calendar set
- clear statistics interfaces
- date
- diagnostics
- high-availability initdead
- high-availability peer
- high-availability shared-ip
- high-availability start
- high-availability stop
- license
- management wireless
- ntp
- passwd
- ping
- poweroff controller
- reload
- reload-management
- setup
- show alarm
- show calendar
- show controller
- show controller cpu-utilization
- show controller file systems
- show controller memory
- show controller processes
- show flash
- show high-availability
- show hostname
- show license
- show license-file
- show log
- show ntp-server
- show syslog-file
- show syslog-host
- show syslog-table
- show timezones
- statistics period
- syslog-host
- telnet
- timezone
- traceroute
audit period

Configures how often the controller collects information about access points.

Syntax

```
audit period period
```

`period` Amount of time that elapses before the controller collects information about access points The valid value range is 5 through 65,535 seconds.

Command Mode

Global configuration

Default

The default audit period is 60 seconds.

Usage

Normally, you do not need to change the audit period. The audit period affects the data collected for the following commands:

- `show ap-assigned`
- `show ap-siblings`
- `show ap-discovered`
- `show topoap`

The audit period also controls how often rogue AP alarms are cleared.

Examples

The following command sets the audit period to 120 seconds:

```
mcl000(config)# audit period 120
mcl000(config)#
```
calendar set

Sets the controller hardware and software clocks.

Syntax

```
calendar set mm/dd/yyyy hh:mm:ss
```

- `mm/dd/yyyy` Date in month/day/year format (for example 07/30/2004).
- `hh:mm:ss` Time in hours (24-hour format), minutes, and seconds.

Command Mode

Privileged EXEC

Default

None

Usage

Use the `calendar set` command to manually set the system date and time. After setting the date and time, you are prompted to allow the controller to reboot so the system clock can be reset to the newly configured time. You can check the time settings with the `show calendar` or `date` commands.

Examples

The following command sets the system date and the hardware clock to the date of July 30, 2004 with a time of 6:25:35 p.m.:

```
mc1000# calendar set 07/30/2004 18:25:35
mc1000#
```

Related Commands

- `show calendar`
- `date`
clear statistics interfaces

Resets statistics counter for the interface.

Syntax

- clear statistics interfaces Dot11Radio *ap_id*
- clear statistics interfaces FastEthernet {controller | ap [ap_id]}

Command Mode

Privileged EXEC

Default

None

Usage

Use the `clear statistics interfaces` commands to clear Dot11Radio or FastEthernet interface statistics. When clearing Dot11Radio statistics, an AP ID must be specified. When clearing FastEthernet statistics, you can specify the controller, all APs, or an AP by its ID.

Examples

This command clears all FastEthernet statistics on all APs:

```
mc1000# clear statistics interfaces FastEthernet ap
```

This command clears all FastEthernet statistics on AP 5:

```
mc1000# clear statistics interfaces FastEthernet ap 5
```
date

Displays the current date and time.

Syntax

```
date
```

Command Mode

Privileged EXEC

Default

None

Usage

Use the `date` command to display the current date and time.

To set the system date and time, use the `calendar set` command.

Examples

This command displays the system date and time.

```
mc1000# date
Fri Jul 22 16:55:26 PDT 2005
```

Related Commands

- `calendar set`
- `show calendar`
diagnostics

Gathers system diagnostic information and compresses it into a tar file.

Syntax

diagnostics

Command Mode

Privileged EXEC

Default

None

Usage

Use the diagnostics command to get diagnostic information about the system in a tar file format. After the diagnostics command has finished running, a tar file with the naming convention `meru-gather-year.month.day.hour:minute.tar.gz` is created in the `/images` directory on the controller (for example, `meru-gather-2004.05.14.15.01.tar.gz` indicates the diagnostics command was run and a tar file created on May 14, 2004 at 3:01 p.m.). Use the copy command to transfer the tar file with FTP or SCP to another system.

Examples

The following runs the diagnostics command:

```
mc1000# diagnostics
Cleaning up previous gather data
Getting process information ...
Getting system log information ...
Getting kernel information ...
Getting network information ...
Getting software information ...
Getting version information ...
Getting disk information ...
Getting System Director data ...
Getting high availability information ...
Data gathering phase complete
/images/meru-gather-2004.12.10.11.42.tar.gz created
Use the ftp option of the cli command to move this file off the machine
mc1000#
```

Related Commands

copy
high-availability initdead

Configures the maximum amount of time a controller searches for a peer controller.

Syntax

`high-availability initdead deadtime`

`deadtime` Maximum amount of time a controller searches for a peer controller after the `high-availability start` command is entered. The valid value range is 30 through 600 seconds.

Command Mode

Global configuration

Default

By default, the initial deadtime is 60 seconds.

Usage

By default, a controller searches for a peer controller for 60 seconds after the `high-availability start` command has been entered. Use the `high-availability initdead` command to change the amount of time a controller searches for a peer.

If a peer controller is not found within the deadtime interval, the controller that initiated the search for a peer automatically becomes the master controller, regardless of the default master controller assignment. The hostname specified in the high-availability shared-ip command is the default master controller.

Network services are not available while a controller is searching for a peer controller.

Examples

The following command sets the deadtime interval for the controller named magnolia to 300 seconds (5 minutes):

```
magnolia(config)# high-availability initdead 300
magnolia(config)#
```

Related Commands

`high-availability shared-ip`
`high-availability start`
`show high-availability`
high-availability peer

Configures the hostname and IP address of the peer controller in the high-availability system.

Syntax

```
high-availability peer hostname ip-address
```

- **hostname**
 - Hostname of the peer controller.
- **ip-address**
 - IP address of the peer controller.

Command Mode

Global configuration

Default

None

Usage

The peer controller in the high-availability system can be a separate controller or another controller card in the same controller chassis. If you are using two controllers, they can be physically at the same location or in different locations at your site.

The peer controller must have a unique IP address. Both controllers must be in the same subnet.

Note: If you change a hostname after high availability has been configured, you must reconfigure the peer controller information before running high availability again. You must reconfigure peer controller information even if the other controller’s hostname and IP address were not changed.

For information about configuring high availability, see the *Meru Wireless LAN System Configuration Guide*.

Examples

The following command sets the peer controller for magnolia with the hostname willow and IP address of 10.10.1.100:

```
magnolia(config)# high-availability peer willow 10.10.1.100
Peer Host=willow
Peer IP=10.10.1.100
configuration modified
```
Related Commands

- high-availability shared-ip
- high-availability start
- high-availability stop
- show high-availability
high-availability shared-ip

Configures the shared (virtual) hostname and IP address for the controller peers.

Syntax

```
high-availability shared-ip hostname ip-address
```

- **hostname**: Hostname of shared (virtual) host.
- **ip-address**: IP address of shared (virtual) IP address.

Command Mode

Global configuration

Default

None

Usage

In the high-availability system, you must configure a third (virtual) IP address that is shared by the peer controllers. The shared hostname must match one of the hostnames of the peer controllers. The virtual hostname and IP address must be identical on both peer controllers.

The controller whose hostname matches the shared hostname becomes the master controller when high availability is started.

For information about configuring high availability, see the *Meru Wireless LAN System Configuration Guide*.

Examples

The following command configures the shared hostname *magnolia* with IP address of 10.10.1.157:

```
magnolia(config)# high-availability shared-ip magnolia 10.10.1.157
Shared Host=magnolia
Shared IP=10.10.1.157
```

Related Commands

- high-availability initdead
- high-availability peer
- high-availability start
- high-availability stop
- show high-availability
high-availability start

Enables high availability.

Syntax

```
high-availability start
```

Command Mode

Global configuration

Default

None

Usage

Before you can enable high availability with the `high-availability start` command, you must do the following:

1. Use the `high-availability peer` command to specify the peer controller.
2. Use the `high-availability shared-ip` command to configure the (virtual) shared IP address and hostname.

If the two controllers were previously in use and have different ESSIDs, Meru Networks recommends that you configure both controllers so that they have the same ESSID, which is the ESSID you want to use for your protected network.

For information about configuring high availability, see the *Meru Wireless LAN System Configuration Guide*.

Examples

The following command enables high availability:

```
controller1(config)# high-availability start
Started
controller1(config)#
```

Related Commands

- `high-availability stop`
- `show high-availability`
- `high-availability peer`
- `high-availability shared-ip`
high-availability stop

Disables high availability.

Syntax high-availability stop

Command Mode Global configuration

Default None

Usage If you disable high availability using the high-availability stop command, and both controllers are still active, access points can associate with either controller unless explicitly configured to associate to a specific controller. Access points associating with either controller could affect overall system coordination, as both controllers could “compete” with each other for access point association.

Meru Networks recommends that the backup controller be powered off before disabling high availability on the master controller.

Examples The following command disables high availability:

controller1(config)# high-availability stop
Stopped
controller1(config)#

Related Commands high-availability start
show high-availability
license

Performs system licensing.

Syntax

```
license {ftp | scp | tftp | sftp}://host/filename {active | standby}
```

- `host` Specifies the hostname where the license file resides. `host` can be a hostname or IP address.
- `filename` Specifies license file name.

Command Mode

Global configuration mode

Default

By default a license for 2 APs and a controller are configured.

Usage

This command activates licenses for system hardware components. Licensing information is embedded within the controller firmware and is enabled with a Meru-generated license file. The license file is generated by Meru Networks and contains the needed keys to license system components, based on the options the customer purchases.

Component licensing includes keys for the master or standby controller, and the maximum number of APs the master or standby controller associates (based upon controller model).

Upon receiving the licensing key file from Meru, place in the FTP directory (if using FTP) or SCP location of your choice.

Use the `no` form to remove the specified feature set from the system.

Examples

The following commands obtain the license file `license17331.lic` from the FTP server at 192.168.1.10 and activates licensing for an active MC3000 controller:

```
mc3000(config)# license
    ftp://admin:admin@192.168.1.10/license17331.lic active
mc3000(config)# end
mc3000# copy pre-upgrade-config running-config
```

Related Commands

- `copy`
- `copy running-config`
management wireless

Enables or disables wireless management access to the controller.

Syntax

management wireless

no management wireless

Command Mode

Global Configuration mode

Default

By default, wireless management to the controller is enabled.

Usage

Use the management wireless command to allow wireless stations to enact configuration changes to the controller. If this presents a security problem for your site, you can disable the wireless access by using the no management wireless command; after which all packets except for VPN and Captive Portal that are sent by wireless clients are blocked.

You can check the status of the management access with the show controller command. The line at the bottom of the output, Management by wireless stations: will show either an on or off value.

Examples

The following command disables controller configuration access to wireless stations:

mc1000# no management wireless

To re-enable access to wireless clients, use the management wireless command:

mc1000 (config)# management wireless

Related Commands

show controller
ntp

Updates the system time by synchronizing the system clock with a specified Network Time Protocol (NTP) server.

Syntax

```plaintext
ntp {sync | server server}
```

server
IP address or hostname of the NTP server providing clock synchronization.

Command Mode
Privileged EXEC

Default
None

Usage

Use the `ntp sync` command to enable periodic synchronization of the system clock with the NTP server specified with the `ntp server` command. Enabling NTP or changing the NTP server takes effect after a system reboot. Information about public NTP servers can be found at www.ntp.org.

To manually set the system clock, use the `calendar set` command.

Use the `date` command to check the system date and time.

Use the `show ntp-server` command to check the IP address of the assigned NTP server.

Examples

The following command performs NTP synchronization and specifies the NTP server with an IP address of 131.107.1.10:

```plaintext
mc1000# ntp sync
mc1000# ntp server 131.107.1.10
Setting NTP Server to 131.107.1.10.  Change will only take effect after reboot.
```

Related Commands

- `calendar set`
- `date`
- `show ntp-server`
passwd

Changes the admin or guest password.

Syntax

```
passwd {admin | guest password}
```

- **admin**: Changes the administrative password.
- **guest**: Changes the guest password.
- **password**: The administrative or guest password.

Command Mode

Global configuration

Default

The default admin password is **admin**. The default guest password is **guest**.

Usage

After initially logging into the system, change the admin password. Follow standard Linux guidelines when changing passwords.

Examples

The following command changes the admin password:

```
controller(config)# passwd admin
Changing password for user admin.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
controller(config)#
```
ping

Tests network connectivity.

Syntax

```
ping hostname
```

- `hostname`: IP address of the device to ping.

Command Mode

Privileged EXEC

Default

None

Usage

Use the `ping` command to test basic network connectivity to a device.

Examples

The following command test the basic connectivity from the controller (10.3.1.2) to a device with an IP address of 10.3.4.5:

```
mcl000# ping 10.3.4.5
PING 10.3.4.5 (10.3.4.5) from 10.3.1.2 : 56(84) bytes of data.
64 bytes from 10.3.4.5: icmp_seq=1 ttl=255 time=0.334 ms
64 bytes from 10.3.4.5: icmp_seq=2 ttl=255 time=0.294 ms
64 bytes from 10.3.4.5: icmp_seq=3 ttl=255 time=0.276 ms
64 bytes from 10.3.4.5: icmp_seq=4 ttl=255 time=0.234 ms
64 bytes from 10.3.4.5: icmp_seq=5 ttl=255 time=0.311 ms

--- 10.3.4.5 ping statistics ---
5 packets transmitted, 5 received, 0% loss, time 3996ms
rtt min/avg/max/mdev = 0.234/0.289/0.334/0.040 ms
mcl000#
```
poweroff controller

Gracefully shuts down the controller.

Syntax

```
poweroff controller
```

Command Mode

Privileged EXEC

Default

None

Usage

Use the `poweroff controller` command to gracefully shut down the controller.

Make sure you use the `copy running-config startup-config` command to save configuration changes to the startup configuration file before shutting down the controller if you want those changes to be available after you power on the controller.

Examples

The following command shuts down the controller:

```
mc1000# poweroff controller
Are you sure you want to poweroff the controller [y|n]? y

Broadcast message from root (pts/0) (Fri May 14 21:51:31 2004):

The system is going down for system halt NOW!

The controller is now shut down.
```
reload

Reboots the controller and access points.

Syntax

```
reload {all | ap [node-id] | controller [force] | default}
```

- **all** Reboots the controller and all access points.
- **ap [node-id]** Reboots all access points if no node ID is specified. Specify a node ID to reboot a specific access point.
- **controller [force]** Reboots only the controller. With the optional **force** option, forces a controller reboot with the last saved startup configuration. The **force** option should only be used in situations when there is no response from the controller.
- **default** Reboots the controller and restores the passwords and system configuration to the original factory settings. Additionally, the AP script files (in /ATS/scripts/*) are deleted.

Command Mode

Privileged EXEC

Default

None

Usage

In a high availability environment, use the **reload all** command when rebooting so that the master and backup controllers use the same configuration.

Examples

The following command reboots the access point with the node ID of 2:

```
controller# reload ap 2
```
reload-management

Resets the controller management process.

Syntax

```
reload-management
```

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to reset the controller management process after the message “System Busy” puts the system in a non-responsive state. The command places the system back in a working mode.

Examples

The `reload-management` command resets the management process after the System Busy error message displays:

```
meru-wifi# show ap
The system is busy. Please try again.
meru-wifi#
meru-wifi# reload-management
```
setup

Starts the basic system configuration setup script.

Syntax

```
setup
```

Command Mode

Privileged EXEC

Default

None

Usage

Use the **setup** script to configure the basic parameters to get the system up and running. As the script runs, you are prompted for information that establishes the communication parameters for the controller.

If you specify that the controller IP address be assigned using DHCP, you need to provide the following information:

- Hostname for the controller (the hostname cannot consist entirely of integers)
- DHCP server IP address (used to assign controller IP address)
- NTP server used to synchronize controller clock (optional)

To assign a static IP address, you need to provide the following information:

- Hostname for the controller (cannot be in the form of an IP address)
- IP address of the controller
- Subnet mask for the controller
- IP address of the controller’s default gateway
- IP addresses for the local DNS servers
- Name of the local domain
- NTP server used to synchronize controller clock (optional)

A complete description of the setup script is provided in the *Meru Wireless LAN System Getting Started Guide*.

Examples

To run the initial configuration script that steps you through basic system configuration, use the **setup** command (partial display follows):

```
default# setup
Begin system configuration ...
```
Country code configuration for this machine.

The country code is currently set to US
Would you like to change it [yes/no/quit]?:

.
show alarm

Displays uncleared alarms known to the controller.

Syntax

show alarm

Command Mode

EXEC

Default

None

Usage

Displays pending and uncleared alarms known to the controller, including those for connected access points, showing the date and time of each alarm, its severity, and the originating node.

If there are no pending uncleared alarms, the following appears:

No entries.

Examples

The following command displays the current pending alarms:

```
mc1000# show alarm
Alarms Table

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Severity</th>
<th>Timestamp</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Down</td>
<td>Critical</td>
<td>2005/05/14 21:57:17</td>
<td>Access Point AP-1 (1)</td>
</tr>
</tbody>
</table>
```
The following table describes the fields of the `show alarm` output:

<table>
<thead>
<tr>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Type</td>
<td>Alarm type. One of the following:</td>
</tr>
<tr>
<td></td>
<td>- AP Down: The controller has lost contact with the access point. Either</td>
</tr>
<tr>
<td></td>
<td>the Ethernet cable is not connected to the access point, or the access</td>
</tr>
<tr>
<td></td>
<td>point is down.</td>
</tr>
<tr>
<td></td>
<td>- Watchdog Failure: The watchdog process is hung. The system must</td>
</tr>
<tr>
<td></td>
<td>be rebooted to clear this failure.</td>
</tr>
<tr>
<td></td>
<td>- Rogue AP Detected: An unauthorized AP (and AP not in the Allowed</td>
</tr>
<tr>
<td></td>
<td>list) has been detected.</td>
</tr>
<tr>
<td></td>
<td>- Certificate expired: The VPN certificate has either expired or has</td>
</tr>
<tr>
<td></td>
<td>not been used yet. Check the certificate date by using the command</td>
</tr>
<tr>
<td></td>
<td><code>show certificate install</code>.</td>
</tr>
<tr>
<td>Severity</td>
<td>The severity of the alarm (always Critical).</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Date and time of the alarm in UTC (year/month/day hh:mm:ss), where:</td>
</tr>
<tr>
<td></td>
<td>- year=year</td>
</tr>
<tr>
<td></td>
<td>- month= month number (01 - 12)</td>
</tr>
<tr>
<td></td>
<td>- day= day number</td>
</tr>
<tr>
<td></td>
<td>- hh= hour (00 - 23)</td>
</tr>
<tr>
<td></td>
<td>- mm= minutes</td>
</tr>
<tr>
<td></td>
<td>- ss= seconds</td>
</tr>
<tr>
<td>Content</td>
<td>Details about the alarm. For rogue access point alarms, the content field</td>
</tr>
<tr>
<td></td>
<td>lists the MAC address, BSSID, and channel that the station uses. For</td>
</tr>
<tr>
<td></td>
<td>access points that are down, the content field lists the AP name and</td>
</tr>
<tr>
<td></td>
<td>number.</td>
</tr>
</tbody>
</table>

Related Commands

`show certificate installed`
show calendar

Displays the current date and time of the hardware clock.

Syntax show calendar

Command Mode Privileged EXEC

Default None

Examples The following command displays the current date and time according to the hardware clock:

```
mc1000# show calendar
Fri Dec 10 12:07:10 2004  0.366550 seconds
mc1000#
```

Related Commands calendar set
date
show controller

Displays controller configuration information.

Syntax

show controller

Command Mode

EXEC

Default

None

Usage

Use the show controller command to see global parameters for the controller.

The display provides the following information about the controller:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller ID</td>
<td>The identification number of the controller.</td>
</tr>
<tr>
<td>Description</td>
<td>Optional text that identifies the controller.</td>
</tr>
<tr>
<td>Host Name</td>
<td>The hostname of the controller.</td>
</tr>
<tr>
<td>Uptime</td>
<td>The amount of time since the controller was booted.</td>
</tr>
<tr>
<td>Location</td>
<td>Optional text to help identify the location of the controller.</td>
</tr>
<tr>
<td>Contact</td>
<td>Option text to help identify the person or group to contact when this controller needs administration help.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Operational state of the controller. If the controller is operating, the state is enabled, if not, the state is disabled.</td>
</tr>
<tr>
<td>Availability Status</td>
<td>Availability of this controller. The controller can be online or offline.</td>
</tr>
<tr>
<td>Alarm State</td>
<td>The alarm state is always Critical.</td>
</tr>
<tr>
<td>Automatic AP Upgrade</td>
<td>On indicates that the controller will automatically upgrade the AP to the version of software running on the controller when the AP associates with the controller. Off indicates this feature is inactive.</td>
</tr>
<tr>
<td>Virtual IP Address</td>
<td>Virtual IP address assigned to the controller.</td>
</tr>
<tr>
<td>Virtual Netmask</td>
<td>Virtual netmask assigned to the controller.</td>
</tr>
</tbody>
</table>
System Management Commands

Examples

The following command displays controller configuration information:

```
mc1000# show controller
Global Controller Parameters

Controller ID                   : 1
Description                    : meru-wifi
Host Name                      : meru-wifi
Uptime                         :
  00d:16h:19m:27s
Location                      : 2nd Floor
  Switch room
Contact                       : Sam Am
Operational State             : Enabled
Availability Status          : Online
```

Parameter Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Gateway</td>
<td>IP address of the default gateway.</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>If dynamic addressing is assigned to this controller, displays the IP address of the server that DHCP requests are being forwarded to.</td>
</tr>
<tr>
<td>Statistics Polling Period (seconds)</td>
<td>The amount of time that must elapse before the controller polls for information (for example, the number of packets passed or dropped).</td>
</tr>
<tr>
<td>Audit Polling Period (seconds)</td>
<td>The amount of time that must elapse before the controller collects information about access points.</td>
</tr>
<tr>
<td>Software Version</td>
<td>The version of software running on the controller.</td>
</tr>
<tr>
<td>Network Device ID</td>
<td>The serial number of the controller.</td>
</tr>
<tr>
<td>System ID</td>
<td>The system identification of the controller.</td>
</tr>
<tr>
<td>Default AP Init Script</td>
<td>The name of the default initialization script that is run for access points that have no script specified. The scripts must reside in the directory <code>/ATS/scripts</code>.</td>
</tr>
<tr>
<td>DHCP Relay Pass-Through</td>
<td>Indicates whether pass-through mode is enabled for the DHCP Relay server.</td>
</tr>
<tr>
<td>Encryption Module Status</td>
<td>Displays whether the optional encryption processing module is present in the controller. If installed, this parameter displays <code>Online</code>. If not installed, this parameter displays <code>Not Installed</code>.</td>
</tr>
<tr>
<td>Controller Model</td>
<td>Lists the controller model.</td>
</tr>
<tr>
<td>Country Setting</td>
<td>Displays the name of the country where the controller is located.</td>
</tr>
<tr>
<td>Manufacturing Serial #</td>
<td>N/A</td>
</tr>
<tr>
<td>Management by wireless stations</td>
<td>If set to <code>on</code>, enables wireless management access to the controller; otherwise, if set to <code>off</code>, changes cannot be made wirelessly.</td>
</tr>
</tbody>
</table>
Alarm State: No Alarm
Automatic AP Upgrade: off
Virtual IP Address: 192.168.10.2
Virtual Netmask: 255.255.255.0
Default Gateway: 192.168.10.1
DHCP Server: 10.0.0.10
Statistics Polling Period (seconds)/0 disable Polling: 300
Audit Polling Period (seconds)/0 disable Polling: 300
Software Version: 3.2-116
Network Device Id:
 00:90:0b:06:15:28
System Id: A255B41E53F3
Default AP Init Script:
DHCP Relay Passthrough: off
Controller Model: MC3000
Country Setting: United States Of America
Manufacturing Serial #: N/A
Management by wireless stations: off
show controller cpu-utilization

Show the controller CPU usage.

Syntax

```
show controller cpu-utilization
```

Command Mode

Privileged EXEC

Default

None

Usage

Use the **show controller cpu-utilization** command to see CPU usage information for the controller. The display includes general usage information as well as a list of the top running processes that is updated in real time. Use a CTRL-C to return to the CLI prompt.

Examples

The following command displays controller CPU utilization information:

```
mc1000# show controller cpu-utilization
```

```
10:43am up 3 days, 23:42, 7 users, load average: 0.00, 0.02, 0.00
149 processes: 146 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: 0.5% user, 1.0% system, 0.0% nice, 98.4% idle
Mem: 515188K av, 133408K used, 381780K free, OK shrd, 2580K buff
Swap: OK av, OK used, OK free
53072K cached

<table>
<thead>
<tr>
<th>PR</th>
<th>USER</th>
<th>PRI</th>
<th>NT</th>
<th>SIZE</th>
<th>RSS</th>
<th>SHARE</th>
<th>STAT</th>
<th>%CPU</th>
<th>%MEM</th>
<th>TIME</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>964</td>
<td>964</td>
<td>728</td>
<td>R</td>
<td>1.5</td>
<td>0.1</td>
<td>0:01</td>
<td>top</td>
</tr>
<tr>
<td>1</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>472</td>
<td>472</td>
<td>416</td>
<td>S</td>
<td>0.0</td>
<td>0.0</td>
<td>0:05</td>
<td>init</td>
</tr>
<tr>
<td>2</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5W</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0:00</td>
<td>keventd</td>
</tr>
<tr>
<td>3</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R-WN</td>
<td>0.0</td>
<td>0.0</td>
<td>0:04</td>
<td>ksoftirqd_CPU1</td>
</tr>
<tr>
<td>4</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5W</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0:00</td>
<td>kswapd</td>
</tr>
<tr>
<td>5</td>
<td>root</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5W</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0:00</td>
<td>kswapd</td>
</tr>
<tr>
<td>6</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5W</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0:00</td>
<td>kswapd</td>
</tr>
<tr>
<td>223</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>580</td>
<td>580</td>
<td>500</td>
<td>S</td>
<td>0.0</td>
<td>0.1</td>
<td>0:00</td>
<td>syslogd</td>
</tr>
<tr>
<td>228</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>444</td>
<td>444</td>
<td>384</td>
<td>S</td>
<td>0.0</td>
<td>0.0</td>
<td>0:00</td>
<td>klogd</td>
</tr>
<tr>
<td>238</td>
<td>root</td>
<td>16</td>
<td>0</td>
<td>1260</td>
<td>1260</td>
<td>1140</td>
<td>S</td>
<td>0.0</td>
<td>0.2</td>
<td>0:01</td>
<td>sshd</td>
</tr>
<tr>
<td>251</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>872</td>
<td>872</td>
<td>692</td>
<td>S</td>
<td>0.0</td>
<td>0.1</td>
<td>0:00</td>
<td>xinetd</td>
</tr>
<tr>
<td>262</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>564</td>
<td>564</td>
<td>496</td>
<td>S</td>
<td>0.0</td>
<td>0.1</td>
<td>0:00</td>
<td>crond</td>
</tr>
<tr>
<td>286</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>968</td>
<td>968</td>
<td>808</td>
<td>S</td>
<td>0.0</td>
<td>0.1</td>
<td>0:00</td>
<td>monet</td>
</tr>
</tbody>
</table>
```
show controller file systems

Displays information about the file systems on the controller.

Syntax

```
show controller file systems
```

Command Mode

Privileged EXEC

Default

None

Usage

This command displays information about the system directories and file systems. It provides the following information:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filesystem</td>
<td>Displays the file system name. If the item is a directory, it displays none.</td>
</tr>
<tr>
<td>1K blocks</td>
<td>Shows the number of 1K byte blocks the file system or directory is configured to use.</td>
</tr>
<tr>
<td>Used</td>
<td>Show the number of 1K byte blocks the file system or directory currently uses.</td>
</tr>
<tr>
<td>Available</td>
<td>Show the number of 1K byte blocks the file system or directory has available to use (free space).</td>
</tr>
<tr>
<td>Use %</td>
<td>Show the percentage of available blocks the file system or directory currently uses.</td>
</tr>
<tr>
<td>Mounted on</td>
<td>Shows the mount point where the file system is mounted or lists the pathname of the directory.</td>
</tr>
</tbody>
</table>

Examples

The following command shows the controller file system information:

```
mc1000# show controller file systems
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1k-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hdc</td>
<td>420453</td>
<td>145615</td>
<td>252426</td>
<td>37%</td>
<td>/</td>
</tr>
<tr>
<td>none</td>
<td>4880</td>
<td>40</td>
<td>4840</td>
<td>1%</td>
<td>/dev/shm</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>4820</td>
<td>4944</td>
<td>50%</td>
<td>/var/run</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>308</td>
<td>9456</td>
<td>4%</td>
<td>/var/log</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>0</td>
<td>9764</td>
<td>0%</td>
<td>/tmp</td>
</tr>
<tr>
<td>none</td>
<td>9764</td>
<td>0</td>
<td>9764</td>
<td>0%</td>
<td>/capture</td>
</tr>
</tbody>
</table>

mc1000#
Related
Commands
show controller memory

Displays memory used by running processes.

Syntax

```
show controller memory
show memory
```

Command Mode

Privileged EXEC

Default

None

Usage

This command displays the system memory usage.

Examples

```
mc1000# show controller memory
 total:  used:  free:  shared:  buffers:  cached:
 Mem: 527548416 237649920 289898496       0  6414336 129626112
 Swap:         0         0         0
 MemTotal:       515184 kB
 MemFree:        283104 kB
 MemShared:           0 kB
 Buffers:          6264 kB
 Cached:          126588 kB
 SwapCached:            0 kB
 Active:          140332 kB
 Inact_dirty:      19204 kB
 Inact_clean:      28012 kB
 Inact_target:     37508 kB
 HighTotal:           0 kB
 HighFree:            0 kB
 LowTotal:        515184 kB
 LowFree:          283104 kB
 SwapTotal:             0 kB
 SwapFree:              0 kB
 Committed_AS:      656468 kB
 mc1000#
```

Related Commands
show controller processes

Displays information about all running controller processes.

Syntax
show controller processes

Command Mode
Privileged EXEC

Default
None

Usage
This command displays a list of the controller processes. For each process, it lists the following information:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>(User ID) Displays the name of the user owning the process.</td>
</tr>
<tr>
<td>PID</td>
<td>(Process ID) Displays the ID number of the process.</td>
</tr>
<tr>
<td>PPID</td>
<td>(Parent Process ID) Shows the process number of the parent to this process.</td>
</tr>
<tr>
<td>C</td>
<td>Shows the system time when the process was started.</td>
</tr>
<tr>
<td>STIME</td>
<td>Shows the terminal information where the process was started.</td>
</tr>
<tr>
<td>TTY</td>
<td>Shows the amount of time the process has been running.</td>
</tr>
<tr>
<td>TIME</td>
<td>Shows the name of the process.</td>
</tr>
</tbody>
</table>

Examples
The following example shows a partial listing of the current system processes:

```
mc1000# show controller processes
UID  PID  PPID  C  STIME     TTY   TIME   CMD
root 1   0   0  Oct14 00:00:05 init
root 2   1   0  Oct14 00:00:00 [keventd]
root 3   1   0  Oct14 00:00:04 [ksoftirqd_CPU0]
root 4   1   0  Oct14 00:00:00 [kswapd]
root 5   1   0  Oct14 00:00:00 [bdflush]
root 6   1   0  Oct14 00:00:00 [kupdated]
root 223 1   0  Oct14 00:00:00 syslogd -m 0
```
root 228 1 0 Oct14 ? 00:00:00 klogd -x
root 238 1 0 Oct14 ? 00:00:01 /usr/sbin/sshd

Related Commands
show flash

Displays the system image filenames in flash memory.

Syntax

show flash

Command Mode

Privileged EXEC

Default

None

Usage

Use the show flash command to display the system image filenames in flash memory.

Examples

The following command lists the system images in flash memory:

mc1000# show flash
3.2-116
3.1-139
mc1000#
show high-availability

Displays high-availability status and configuration information.

Syntax

show high-availability

Command Mode

Privileged EXEC

Default

None

Usage

Use the `show high-availability` command to see status of the high availability configuration. The output for this command depends on the controller on which you are running the command. The `show high-availability` command displays the following information:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run at boot</td>
<td>Displays whether high availability is started after a system boot. The field can display YES or NO.</td>
</tr>
<tr>
<td>This host</td>
<td>Displays the name of the host where this command is executed.</td>
</tr>
<tr>
<td>Peer host</td>
<td>Displays the host name of the peer (the slave hostname if this is the master, the master hostname if this is the slave).</td>
</tr>
<tr>
<td>Peer IP</td>
<td>Displays the IP address of the peer (the slave IP address if this is the master, and the master IP address if this is the slave).</td>
</tr>
<tr>
<td>Shared</td>
<td>Displays the name and IP address of the virtual (shared) system, or if not configured, the following: HA shared resource is not configured.</td>
</tr>
<tr>
<td>Initial dead time</td>
<td>Displays the initialization interval (dead time setting; that is, the number of seconds this controller searches for a peer after HA is started; see <code>high-availability initdead</code>).</td>
</tr>
<tr>
<td>Local status</td>
<td>High-availability state of the controller. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Running-Master</td>
</tr>
<tr>
<td></td>
<td>• Running-Slave</td>
</tr>
<tr>
<td></td>
<td>• Not running (high availability is configured but not started)</td>
</tr>
</tbody>
</table>
Examples

The following examples illustrate a high-availability environment using a controller named `oak` with an IP address of 10.0.10.157, another controller named `redwood` with an IP address of 10.0.10.156, and a shared host named `oak` with an IP address of 10.0.10.157.

The following command, issued on `oak`, shows HA is configured but not running:

```
oak# show high-availability
Configuration:
-------------------------
Run at boot : NO
This host : oak
Peer host : redwood
Peer IP : 10.0.10.156
Shared : oak 10.0.10.157
Initial dead time : 60 sec
-------------------------
Local status : Not running
```

The following commands, issued on `oak`, start HA and show HA initializing:

```
oak# configure terminal
oak(config)# high-availability start
HA is running. To run it at boot save this configuration (copy running-config startup-config).
oak(config)# exit
```

```
oak# show high-availability
Configuration:
-------------------------
Run at boot : NO
This host : oak
Peer host : redwood
Peer IP : 10.0.10.156
Shared : oak 10.0.10.157
Initial dead time : 60 sec
-------------------------
Local status : Running-Slave
    redwood : init
    oak     : up
```

During the initialization interval (60 seconds), `redwood` is assumed to be starting and `oak` is waiting for it. No controller is servicing the network during the initialization interval.

The following command, issued on `oak` after the initialization interval has elapsed, shows `oak` has become master and that the peer, `redwood` could not be found:

```
oak# show high-availability
Configuration:
-------------------------
Run at boot : NO
This host : oak
Peer host : redwood
Peer IP : 10.0.10.156
Shared : oak 10.0.10.157
Initial dead time : 60 sec
```
Local status: Running-Master
redwood: dead
oak: active
oak#

Related Commands:
- high-availability peer
- high-availability shared-ip
- high-availability start
- high-availability stop
show hostname

Displays the hostname of the controller.

Syntax
`show hostname`

Command Mode
Privileged EXEC

Default
The default hostname is `default`.

Usage
Use the `show hostname` command to display the hostname of the controller. If you did not change the hostname during setup configuration, the controller hostname is `default`.

Examples
The following command displays the controller hostname, `mc1000`.

```
mc1000# show hostname
mc1000
mc1000#
```

Related Commands
`setup`
show license

Displays the system license.

Syntax

```
show license
```

Command Mode

Privileged EXEC

Default

Shows the system licenses.

Usage

Use the `show license` command to display the status of system licensing for all WLAN controllers and APs. The command provides the following information:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Name</td>
<td>Displays the name of the feature being licensed (controller or AP).</td>
</tr>
<tr>
<td>CtrlStatus</td>
<td>Shows the status of the controller entry, either the active controller, or the standby controller, if a High Availability configuration is implemented.</td>
</tr>
<tr>
<td>LicenseType</td>
<td>Show the type of license in use: temporary or permanent.</td>
</tr>
<tr>
<td>Expiry Date</td>
<td>Show the date a temporary license expires. The field contains ‘-’ if the license is permanent.</td>
</tr>
<tr>
<td>TotalCount</td>
<td>Shows the total number of entities the license covers.</td>
</tr>
<tr>
<td>InUse</td>
<td>Shows the number of licensed entities that are currently being used.</td>
</tr>
</tbody>
</table>

Examples

The following command displays a sample system license table.

```
meru-wifi# show license
```

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>CtrlStatus</th>
<th>LicenseType</th>
<th>Expiry Date</th>
<th>TotalCount</th>
<th>InUse</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller</td>
<td>active</td>
<td>permanent</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ap</td>
<td>active</td>
<td>permanent</td>
<td>-</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

License Table(2)

94 Meru Wireless LAN System Command Reference
Related Commands

- copy
- high-availability start
- license
- show license-file
show license-file

Displays the content of system license files.

Syntax

show license-file [active | standby]

active

The active controller.

standby

The standby controller (in an HA configuration).

Command Mode

Privileged EXEC

Default

Usage

Use the show license-file command to show the detailed content of the active or standby controller license.

Examples

The following example shows the content of the active controller license:

controller# show license-file active
-------------- STANDALONE LICENSE ------------------
SERVER this_host ANY
VENDOR meru
USE_SERVER
INCREMENT controller merud 1.0 permanent 1 \
 HOSTID=COMPOSITE=3AD81623F077 ISSUED=11-aug-2006 \
 START=10-aug-2006 SIGN="00BA 7767 A6E6 2A79 EED8 8296 9301 \
 DA00 3C5D 0354 7332 0CFF 4CE2 5E83 98F6"
INCREMENT ap merud 1.0 permanent 150 HOSTID=COMPOSITE=3AD81623F077 \
 ISSUED=11-aug-2006 START=10-aug-2006 SIGN="0024 0054 4821\n 06B2 \n BF68 851D 2E15 AC00 7577 AF2F D1AA 2CF1 7B19 2BDF 21EE"

Related Commands

high-availability start
license
show license
show log

Displays the system log.

Syntax

```
show log [running-config]
```

Command Mode

Privileged EXEC

Default

Shows the system log.

Usage

Use the `show log` command to display the controller system log, which lists all the syslog entries and alarms. Using the optional keyword `running-config`, shows the running configuration, as is also shown with the `show running-config` command.

Examples

The following command displays a few lines from the controller log.

```
meru-wifi# show log
Aug  8 09:46:19 meru-wifi ALARM: AP DOWN CRITICAL Access Point #10-1F-Mktg-208 (10) at location Near printer
Aug  8 09:46:19 meru-wifi ALARM: 1123519579l | system | info | ALR | AP DOWN CRITICAL Access Point #10-1F-Mktg-208 (10) at location Near printer
Aug  8 09:46:22 meru-wifi ALARM: AP UP Access Point #10-1F-Mktg-208 (10) is up
Aug  8 09:46:22 meru-wifi ALARM: 1123519582l | system | info | ALR | AP UP Access Point #10-1F-Mktg-208 (10) is up
Aug  8 13:42:34 meru-wifi ALARM: AP DOWN CRITICAL Access Point #10-1F-Mktg-208 (10) at location Near printer
```

Related Commands

- `show running-config`
- `syslog-host`
show ntp-server

Shows the assigned Network Time Protocol (NTP) server.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>show ntp-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Mode</td>
<td>Privileged EXEC</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Usage</td>
<td>Use the show ntp-server command to show the NTP server that has been specified with the ntp server command.</td>
</tr>
<tr>
<td>Examples</td>
<td>The following command shows the NTP server:</td>
</tr>
<tr>
<td></td>
<td>mc1000# show ntp-server</td>
</tr>
<tr>
<td></td>
<td>10.0.220.12</td>
</tr>
<tr>
<td></td>
<td>mc1000#</td>
</tr>
<tr>
<td>Related Commands</td>
<td>ntp</td>
</tr>
</tbody>
</table>

98 Meru Wireless LAN System Command Reference
show syslog-file

Displays the external syslog file, if it exists.

Syntax

show syslog-file [facility]

facility

Optional. Shows entries for the syslog facility, for example:

- 802.mobility
- bulkupdate
- nms
- qos
- security
- system

Command Mode

EXEC

Default

None

Usage

This command shows the contents of the external syslog file, if it exists. The optional facility parameter filters the output to show entries for that facility only.

By default, external logging is disabled. You can configure an external syslog host with the syslog-host command.

Examples

The following command shows the syslog file has no entries, although it does exist:

```
mc1000(config)# show syslog-file
SysLog(No entries)
mc1000(config)#
```

Related Commands

syslog-host
show syslog-host

Displays the external syslog host if it is configured.

Syntax

show syslog-host

Command Mode

EXEC

Default

None

Usage

By default, external logging is disabled. You can configure an external syslog host with the syslog-host command.

Examples

The following command shows the syslog host is 10.1.2.3:

mc1000(config)# show syslog-host
10.1.2.3
mc1000(config)#

Related Commands

syslog-host
show syslog-table

Displays the external syslog facility table.

Syntax

`show syslog-table [facility]`

facility
Optional. Shows entries for the syslog facility, for example:

- 802.mobility
- bulkupdate
- nms
- qos
- security
- system

Command Mode

EXEC

Default

None

Usage

This command shows the contents of the external syslog table, if it exists. The optional facility parameter filters the output to show entries for that facility only.

By default, external logging is disabled. You can configure an external syslog host with the `syslog-host` command.

Examples

The following command shows the syslog file has no entries, although it does exist:

```
mc1000(config)# show syslog-table security
```

```
Line    Priority Mnemonic  Time                       Record
31      info      WAU       2005/08/05 10:37:27        admin@10.0.220.25 logged in
OK
SysLog(1 entry)
```

related commands

`syslog-host`
show timezones

Displays timezones and related cities.

Syntax

```
show timezones
```

Command Mode

Privileged EXEC

Default

None

Usage

This command shows a listing a major cities, categorized by timezone.

Examples

The following shows a partial list of the command output:

```
mc1000(config)# show timezones
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmera
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
```

Related Commands

timezone
statistics period

Configures how often the controller polls for information.

Syntax

```
statistics period period
```

period Amount of time that elapses before the controller polls for information. The valid value range is 5 through 65,535 seconds.

Command Mode

Global configuration

Default

The default statistics period is 60 seconds.

Usage

Use the **statistics period** command to change the amount of time that elapses before the controller polls for information. For example, by default, the controller polls for information, such as the number of packets passed or dropped, every 60 seconds. Specifying a value of zero (0) disables polling. The statistics period affects the data collected for the following commands:

- **show statistics station-per-ap**—Displays the list of station statistics per AP.
- **show statistics top10-ap-problem**—Displays the list of APs having the most significant problems.
- **show statistics top10-ap-talker**—Displays the list of APs handling the heaviest traffic (MAX Tx+Rx frames).
- **show statistics top10-station-problem**—Displays the list of stations having the most significant problems.
- **show statistics top10-station-talker**—Displays the list of stations generating the highest traffic.

Examples

The following command sets the statistics period to 1,000 seconds:

```
mc1000(config)# statistics period 1000
```

Related Commands
syslog-host

Configures an external syslog host.

Syntax

 syslog-host hostname

 no syslog-host

hostname

Name or IP address, in dotted decimal notation, of the external syslog host.

Command Mode

Global configuration

Default

None

Usage

This command configures a remote server to serve as the location where the syslog error logging file is maintained. By default, no host is specified.

To remove a configured syslog server, use the no syslog-host command.

Note: After configuring a syslog host, reboot the controller to activate the syslog functionality.

Examples

The following commands check the syslog host setting, set host 10.1.2.3 to the external syslog server, and then display the change:

 mc1000(config)# do show syslog-host
 External logging is disabled
 mc1000(config)# syslog-host 10.1.2.3
 mc1000(config)# do show syslog-host
 10.1.2.3

The following commands remove the syslog host setting and then display the change:

 mc1000(config)# no syslog-host
 mc1000(config)# do show syslog-host
 External logging is disabled

Related Commands

 show syslog-host
telnet

Configure telnet connectivity.

Syntax

```
telnet {enable | disable}
```

- **enable**: Enables telnet access when telnet is disabled.
- **disable**: Disables telnet access when telnet is enabled.

Command Mode

Global configuration mode

Default

Telnet access is enabled.

Usage

This command disables telnet access when telnet is enabled.

Examples

The following command disables telnet access:

```
mc1000(config)# telnet disable
```
timezone

Configures the timezone setting.

Syntax

```
timezone {menu | set zone}
```

menu
Displays a series of numbered lists of locations (continents and oceans) to help select a timezone setting.

set zone
Directly sets the timezone to a specific setting.

Command Mode
Privileged EXEC mode

Default
None

Usage
This command configures the timezone setting for the controller. The **menu** option allows a location to be selected through a series of menu selections. At the end of the selection questions, you are prompted to set the timezone, and notified of the zone setting. This zone setting can be used in subsequent timezone sessions, as an argument to the **set** option.

After the timezone is changed, the controller should be rebooted.

Examples
The following shows how to set the timezone using the **menu** option:

```
mc1000(config)# timezone menu
Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.
  1) Africa
  2) Americas
  3) Antarctica
  4) Arctic Ocean
  5) Asia
  6) Atlantic Ocean
  7) Australia
  8) Europe
  9) Indian Ocean
 10) Pacific Ocean
11) none - I want to specify the time zone using the Posix TZ format.
  ?? 10
Please select a country.
  1) Chile                                      15) Northern Mariana Islands
  2) Cook Islands                                16) Palau
```
3) Ecuador 17) Papua New Guinea
4) Fiji 18) Pitcairn
5) French Polynesia 19) Samoa (American)
6) Guam 20) Samoa (Western)
7) Kiribati 21) Solomon Islands
8) Marshall Islands 22) Tokelau
9) Micronesia 23) Tonga
10) Nauru 24) Tuvalu
11) New Caledonia 25) US minor outlying islands
12) New Zealand 26) United States
13) Niue 27) Vanuatu
14) Norfolk Island 28) Wallis & Futuna
#? 26

Please select one of the following time zone regions.
1) Eastern Time
2) Eastern Time - Michigan - most locations
3) Eastern Time - Kentucky - Louisville area
4) Eastern Time - Kentucky - Wayne County
5) Eastern Standard Time - Indiana - most locations
6) Eastern Standard Time - Indiana - Crawford County
7) Eastern Standard Time - Indiana - Starke County
8) Eastern Standard Time - Indiana - Switzerland County
9) Central Time
10) Central Time - Michigan - Wisconsin border
11) Central Time - North Dakota - Oliver County
12) Mountain Time
13) Mountain Time - south Idaho & east Oregon
14) Mountain Time - Navajo
15) Mountain Standard Time - Arizona
16) Pacific Time
17) Alaska Time
18) Alaska Time - Alaska panhandle
19) Alaska Time - Alaska panhandle neck
20) Alaska Time - west Alaska
21) Aleutian Islands
22) Hawaii
#? 16

The following information has been given:

United States
Pacific Time

The name of the time zone is 'America/Los_Angeles'.
Is the above information OK?
1) Yes
2) No
#? 1

The following command is the alternative way of selecting the same time zone

timezone set America/Los_Angeles

The time zone is successfully set
traceroute

Tests network connectivity.

Syntax

`traceroute` `hostname`

hostname Name or IP address, in dotted decimal notation, of the host host address to resolve.

Command Mode

Privileged EXEC

Default

None

Usage

This command displays the IP address and status for all routers between the controller and a specified remote destination. Instead of a hostname, you can alternatively specify a domain name instead of an IP address or a hostname.

Examples

The following command displays the route to a destination whose hostname is Ourserver:

```
mc1000# traceroute Ourserver
traceroute to OurServer (10.0.13.1), 30 hops max, 38 byte packets
1  mc1000 (10.19.1.1)  2997.354 ms !H  2999.525 ms !H  2999.944 ms
```

Related Commands

`ping`
Chapter 5
Interface and IP Commands

The commands contained in this chapter are used to configure and show information about network addressing:

- `ip address`
- `ip address dhcp`
- `ip default-gateway`
- `ip dhcp-passthrough`
- `ip dhcp-server`
- `ip dns-server`
- `ip domainname`
- `ip ftp`
- `ip scp`
- `ip sftp`
- `ip udp-broadcast`
- `show interfaces FastEthernet ap`
- `show interfaces FastEthernet controller`
- `show interfaces FastEthernet statistics`
- `show ip`
ip address

Configures static IP address connectivity.

Syntax

```
ip address address netmask
```

- `address` Sets the IP address for `address`.
- `netmask` Sets the IP address netmask to `netmask`

Command Mode
Global configuration, radius profile, AP connectivity, and VLAN configuration modes

Default
None

Usage
This command configures the IP address and netmask for a controller, RADIUS server, access point, or VLAN, depending on the submode in which this command is invoked.

When configuring the IP address of the AP, the AP is a Remote AP and you are configuring a static IP address. You can also configure the AP to use a dynamic IP address with the `ip address dhcp` command.

When configuring the IP address in the VLAN submode, the IP address specified for the VLAN must match the default gateway configured in the client.

Examples
To assign a static IP address to the controller, use the `ip address` command with the IP address and subnet arguments, as follows:

```
mcl000(config)# ip address 10.0.0.19 255.0.0.0
```

To assign a static IP address to the AP, enter the AP connectivity submode. Then use the `ip address` command to configure the IP address 10.0.220.30 and netmask 255.255.255.0 for the Remote AP.

```
mcl000(config)# ap 1
mcl000(config-ap)# 13-connectivity 13-preferred
mcl000(config-ap-connectivity)# ip address 10.0.220.30 255.255.255.0
mcl000(config-ap-connectivity)#
```

The following command specifies the IP address 10.1.2.3 and netmask 255.0.0.0 for a VLAN.

```
mcl000(config)# vlan qa tag 100
mcl000(config-vlan)# ip 10.1.2.3 255.0.0.0
```
Related Commands

ip address dhcp
ip default-gateway
ip dns-server
show ap-connectivity
show controller
ip address dhcp

Configures DHCP connectivity.

Syntax

ip address dhcp

Command Mode

Global configuration and AP connectivity configuration modes

Default

None

Usage

This command configures DHCP connectivity for a controller and access point, depending on
the submode in which this command is invoked.

Examples

To allow the controller to be assigned a dynamic IP address, use the ip address dhcp
command, as follows:

mc1000(config)# ip address dhcp

To allow the AP to be assigned a dynamic IP address, enter the AP connectivity submode. Then use the ip address dhcp command to configure a dynamically assigned IP address for the Remote AP.

mc1000(config)# ap 1
mc1000(config-ap)# l3-connectivity l3-preferred
mc1000(config-ap-connectivity)# ip address dhcp
mc1000(config-ap-connectivity)#

Related Commands

ip default-gateway
ip dns-server
show controller
ip default-gateway

Configures default gateway connectivity.

Syntax

```
ip default-gateway address
```

- **address**: IP address of the default gateway.

Command Mode

- Global configuration, AP connectivity configuration, and VLAN configuration modes

Default

The default IP address of the default gateway is 0.0.0.0.

Usage

Configures default gateway connectivity for the controller, access point, or VLAN, depending on the submode under which the command is invoked.

When configuring the default gateway for a VLAN, use the default gateway used by the controller to route traffic coming from wireless clients using the VLAN.

Use the `default` form to set the default gateway to its default value.

Examples

To assign the default gateway IP address used by the controller, use the `ip default-gateway` command with the IP address, as follows:

```
mcl000(config)# ip default-gateway 10.0.0.1
```

To assign the default gateway IP address used by the AP, enter the AP connectivity submode. Then use the `ip default-gateway` command to configure the IP address for the Remote AP.

```
mcl000(config)# ap 1
mcl000(config-ap)# l3-connectivity l3-preferred
mcl000(config-ap-connectivity)# ip default-gateway 10.0.0.1
```

To assign the default gateway IP address used by the VLAN, for example:

```
mcl000(config)# vlan qa tag 100
mcl000(config-vlan)# ip default-gateway 10.0.0.1
```
Related Commands

- ip address
- ip address dhcp
- ip dns-server
- show ap-connectivity
- show controller
ip dhcp-passthrough

Enables or disables the DHCP pass-through.

Syntax

ip dhcp-passthrough

no dhcp-passthrough

Command Mode

Global configuration and VLAN configuration modes

Default

The default is DHCP pass-through enabled.

Usage

This command enables or disables (using the `no` form) the DHCP pass-through service for the controller or the VLAN, depending on the submode under which the command is invoked. If enabled, and if the DHCP server IP is the default 127.0.0.1, DHCP packets pass through without modification (as in a bridge). The pass-through behavior eliminates the need for the DHCP relay in most installations, and puts the burden of relay on the routers, which is traditional.

Examples

To enable DHCP pass-through for the controller, use the `ip dhcp-passthrough` command, as follows:

```
mc1000(config)# ip dhcp-passthrough
```

To enable DHCP pass-through for the VLAN, for example:

```
mc1000(config)# vlan qa tag 100
mc1000(config-vlan)# ip dhcp-passthrough
```

Related Commands

- `ip dhcp-server`
- `show controller`
ip dhcp-server

Configures the DHCP relay server.

Syntax

```
ip dhcp-server ip-address

no ip dhcp-server
```

ip-address IP address of the DHCP relay server in dotted decimal notation (*n.n.n.n*).

Command Mode

Global configuration and VLAN configuration modes

Default

The default IP address of the DHCP relay server is 127.0.0.1.

Usage

This command configures the DHCP relay server for the controller and VLAN, depending on the submode under which the command is invoked.

If specified in VLAN submode, the specified DHCP server overrides the controller-assigned DHCP server configuration. Because of some interoperability configurations, the System Director also supports the use of the IP address 255.255.255.255 as a valid DHCP relay address.

Use the `no` form to remove the DHCP relay server.

Examples

To configure a DHCP relay server for the controller, use the `ip dhcp-server` command, as follows:

```
mcl000(config)# ip dhcp-server 10.0.1.20
```

To configure a DHCP server for the VLAN, for example:

```
mcl000(config)# vlan qa tag 100
mcl000(config-vlan)# ip dhcp-server 10.0.0.1
```

Related Commands

- `ip dhcp-passthrough`
- `show controller`
ip dns-server

Configures a DNS server’s IP address.

Syntax

```
ip dns-server ip_addr
no ip dns-server
ip dns-server \{primary |secondary\} ip_addr (for AP connectivity sub-mode only)
```

- **ip_addr**: IP address of the DNS server in dotted decimal notation (n.n.n.n).

Command Mode

Global configuration and AP connectivity configuration modes

Default

None

Usage

Use this command to add a DNS server by specifying its IP address. After the DNS servers have been added, when needed, the system will connect to the first DNS server if it is able to; otherwise, it will go on to the next one until it finds one that is working.

Use the **no** form to remove the DNS server.

Examples

To assign a DNS server IP address used by the controller, use the **ip dns-server** command with the IP address, as follows:

```
mc1000(config)# ip dns-server 10.0.200.1
```

To assign a DNS server IP address used by the AP, enter the AP connectivity submode. Then use the **ip dns-server primary** or **ip dns-server secondary** command to configure the DNS server IP address used by the Remote AP:

```
mc1000(config)# ap 1
mc1000(config-ap)# 13-connectivity 13-preferred
mc1000(config-ap-connectivity)# ip dns-server primary 10.0.0.1
```

Related Commands

- **ip address**
- **ip address dhcp**
- **ip default-gateway**
ip domainname

Configures the DNS domain name.

Syntax

ip domainname name

no ip domainname

name Specifies the domain using from 1 to 63 characters.

Command Mode

Global configuration

Default None

Usage

Sets the domain name for use with DNS. Use the no command form to remove the configured domain name.

Examples

To assign a domain name for use by DNS, type configure terminal to enter global configuration mode, and use the ip domainname command with the name, as follows:

mcl000(config)# ip domainname merunetworks.com

Related Commands

ip address
ip address dhcp
ip default-gateway
ip dns-server
ip ftp

Configures a username/password for FTP.

Syntax

```
ip ftp {username username | password password}
```

- **username username** Specifies the FTP username.
- **password password** Specifies the FTP password.

Command Mode

Global configuration

Default

None

Usage

Sets the default username and password for an FTP session.

Examples

To set the FTP username to suzanne for the session:

```
mcl000(config)# ip ftp username suzanne
```

Related Commands

- ip address
- ip address dhcp
- ip default-gateway
- ip dns-server
ip scp

Configures the username/password for SCP.

Syntax

```
ip scp {username username | password password}
```

- **username username** Specifies the SCP username. The name can be a maximum of 32 characters.
- **password password** Specifies the SCP password. The password can be a maximum of 32 characters.

Command Mode

Global configuration

Default

None

Usage

Sets the default username and password for an SCP session.

Examples

To set the SFTP username to suzanne for the session:

```
mcl000(config)# ip scp username susanne
```

Related Commands

- `ip address`
- `ip address dhcp`
- `ip default-gateway`
- `ip dns-server`
ip sftp

Configures the username/password for SFTP.

Syntax

```
ip sftp {username username | password password}
```

username username Specifies the SFTP username.

password password Specifies the SFTP password.

Command Mode

Global configuration

Default

None

Usage

Sets the default username and password for an SFTP session.

Examples

To set the SFTP username to suzanne for the session:

```
mc1000(config)# ip sftp username suzanne
```

Related Commands

- `ip address`
- `ip address dhcp`
- `ip default-gateway`
- `ip dns-server`
ip udp-broadcast

Configures UDP broadcast ports.

Syntax

```
ip udp-broadcast {upstream | downstream port_number}
no ip udp-broadcast {upstream | downstream port_number}
```

- **upstream**: Configure a port in the upstream direction.
- **downstream**: Configure a port in the downstream direction.
- **port_number**: Specifies the upstream or downstream port number (1 to 65535). A maximum of 8 downstream and 8 upstream ports can be configured.

Command Mode

Global configuration

Default

No ports are configured.

Usage

This command configures the set of UDP ports which are inspected for a broadcast destination address, and if received, are sent upstream as broadcast on the the wired interface or downstream onto the wireless interfaces.

The maximum number of ports which can be configured is 8 per direction. This is required if you are going to pass broadcast traffic for an application.

Use the `no` form to remove the udp broadcast port.

Examples

To configure port 5455 to be used as a UDP broadcast to wireless clients for example, use the following command:

```
mc1000(config)# ip udp-broadcast downstream 5455
```

To cancel the configured upstream port number 3822 for example, use the following command:

```
mc1000(config)# no ip udp-broadcast upstream 3822
```
Related Commands

- ip address
- ip address dhcp
- ip default-gateway
- ip dns-server
show interfaces FastEthernet ap

Displays information related to the FastEthernet configuration for the access point.

Syntax

`show interfaces FastEthernet ap [ap-id]`

`ap-id` Specifies a unique identifier for the access point.

Command Mode

Privileged EXEC mode

Default

None

Usage

This command displays FastEthernet Interface configuration information for all APs, or the specified access point. The following information is provided:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Type</td>
<td>The type of node, for example, access point.</td>
</tr>
<tr>
<td>Node ID</td>
<td>The unique identifier for the access point.</td>
</tr>
<tr>
<td>Node Name</td>
<td>The name assigned to the access point.</td>
</tr>
<tr>
<td>Interface Index</td>
<td>The index for identifying this interface.</td>
</tr>
<tr>
<td>Description</td>
<td>Shows a description of the interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>The Maximum Transmission Unit (MTU) for the interface.</td>
</tr>
<tr>
<td>Interface Speed (Mbits/sec)</td>
<td>The configured speed for the interface.</td>
</tr>
<tr>
<td>Duplex Mode</td>
<td>Indicates whether the interface is using full-duplex or half-duplex mode.</td>
</tr>
<tr>
<td>Physical Address</td>
<td>The MAC address of the interface.</td>
</tr>
<tr>
<td>Operational State</td>
<td>The status of the interface. Status can be Enabled or Disabled.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date the interface was changed last.</td>
</tr>
</tbody>
</table>
The following command displays FastEthernet configuration for all APs:

```
mc1000# show interfaces FastEthernet ap
```

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Name</th>
<th>MTU</th>
<th>MAC Address</th>
<th>Op State</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap</td>
<td>41</td>
<td>Qa2ndFloor</td>
<td>1500</td>
<td>00:0c:e6:00:17:9f</td>
<td>Enabled</td>
<td>2004/12/11 16:41:53</td>
</tr>
<tr>
<td>ap</td>
<td>40</td>
<td>Cs1stFloor</td>
<td>1500</td>
<td>00:0c:e6:00:00:e5</td>
<td>Enabled</td>
<td>2004/12/11 16:41:43</td>
</tr>
<tr>
<td>ap</td>
<td>39</td>
<td>Sel1stFloor</td>
<td>1500</td>
<td>00:0c:e6:00:00:62</td>
<td>Enabled</td>
<td>2004/12/11 16:41:39</td>
</tr>
<tr>
<td>ap</td>
<td>38</td>
<td>Exec1stFloor</td>
<td>1500</td>
<td>00:00:00:00:00:00:00</td>
<td>Disabled</td>
<td>2004/12/11 16:41:22</td>
</tr>
<tr>
<td>ap</td>
<td>37</td>
<td>Hw2ndFloor</td>
<td>1500</td>
<td>00:0c:e6:00:05:5f</td>
<td>Enabled</td>
<td>2004/12/11 16:41:43</td>
</tr>
<tr>
<td>ap</td>
<td>36</td>
<td>Mktg1stFloor</td>
<td>1500</td>
<td>00:0c:e6:00:9a:c5</td>
<td>Enabled</td>
<td>2004/12/11 16:41:51</td>
</tr>
<tr>
<td>ap</td>
<td>35</td>
<td>Sw2ndFloor</td>
<td>1500</td>
<td>00:0c:e6:00:03:1c</td>
<td>Enabled</td>
<td>2004/12/11 16:41:39</td>
</tr>
</tbody>
</table>

The following command displays FastEthernet configuration information for AP 1:

```
mc1000# show interfaces FastEthernet ap 1
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Octets</td>
<td>The number of octets received by this interface.</td>
</tr>
<tr>
<td>In Unicast Packets</td>
<td>The number of unicast packets received by this interface.</td>
</tr>
<tr>
<td>In Non-Unicast Packets</td>
<td>The number of non-unicast packets received by this interface.</td>
</tr>
<tr>
<td>In Discards</td>
<td>The number of incoming packets discarded by this interface.</td>
</tr>
<tr>
<td>In Errors</td>
<td>The number of incoming packets with errors on this interface.</td>
</tr>
<tr>
<td>In Unknown Protocols</td>
<td>The number of packets with an unknown protocol received by this interface.</td>
</tr>
<tr>
<td>Out Octets</td>
<td>The number of octets sent by this interface.</td>
</tr>
<tr>
<td>Out Unicast Packets</td>
<td>The number of unicast packets sent by this interface.</td>
</tr>
<tr>
<td>Out Non-Unicast Packets</td>
<td>The number of non-unicast packets sent by this interface.</td>
</tr>
<tr>
<td>Out Discards</td>
<td>The number of outgoing packets discarded by this interface.</td>
</tr>
<tr>
<td>Out Errors</td>
<td>The number of outgoing packets with errors on this interface.</td>
</tr>
<tr>
<td>Out Queue Length</td>
<td>The number of packets in the outgoing packet queue.</td>
</tr>
</tbody>
</table>

```
Interface Table(7)
```

Node Type : ap
Node ID : 35
Node Name : Sw2ndFloor
Interface Index : 100
Description : eth0-35-100
MTU : 1500
Interface Speed (Mbits/sec) : 100
Duplex Mode : full-duplex
<table>
<thead>
<tr>
<th>Physical Address</th>
<th>00:0c:e6:00:03:1c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational State</td>
<td>Enabled</td>
</tr>
<tr>
<td>Last Changed</td>
<td>2004/12/11 16:41:39</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>In Octets</td>
<td>186535270</td>
</tr>
<tr>
<td>In Unicast Packets</td>
<td>1490991</td>
</tr>
<tr>
<td>In Non-Unicast Packets</td>
<td>1525</td>
</tr>
<tr>
<td>In Discards</td>
<td>0</td>
</tr>
<tr>
<td>In Errors</td>
<td>0</td>
</tr>
<tr>
<td>In Unknown Protocols</td>
<td>1476</td>
</tr>
<tr>
<td>Out Octets</td>
<td>30534764</td>
</tr>
<tr>
<td>Out Unicast Packets</td>
<td>223555</td>
</tr>
<tr>
<td>Out Non-Unicast Packets</td>
<td>49</td>
</tr>
<tr>
<td>Out Discards</td>
<td>0</td>
</tr>
<tr>
<td>Out Errors</td>
<td>0</td>
</tr>
<tr>
<td>Out Queue Length</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Commands
show interfaces FastEthernet controller

Displays information related to the FastEthernet configuration for the controller.

Syntax

```
show interfaces FastEthernet controller
```

Command Mode

Privileged EXEC mode

Default

None

Usage

This command displays FastEthernet Interface configuration information for the controller. The following information is provided:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Type</td>
<td>The type of node, for example, controller.</td>
</tr>
<tr>
<td>Node ID</td>
<td>The unique identifier for the controller.</td>
</tr>
<tr>
<td>Node Name</td>
<td>The name assigned to the controller.</td>
</tr>
<tr>
<td>Interface Index</td>
<td>The index for identifying this interface.</td>
</tr>
<tr>
<td>Description</td>
<td>Shows a description of the interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>The Maximum Transmission Unit (MTU) for the interface.</td>
</tr>
<tr>
<td>Interface Speed (Mbits/sec)</td>
<td>The configured speed for the interface.</td>
</tr>
<tr>
<td>Duplex Mode</td>
<td>Indicates whether the interface is using full-duplex or half-duplex mode.</td>
</tr>
<tr>
<td>Physical Address</td>
<td>The MAC address of the interface.</td>
</tr>
<tr>
<td>Operational State</td>
<td>The status of the interface. Status can be Enabled or Disabled.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date the interface was changed last.</td>
</tr>
<tr>
<td>In Octets</td>
<td>The number of octets received by this interface.</td>
</tr>
<tr>
<td>In Unicast Packets</td>
<td>The number of unicast packets received by this interface.</td>
</tr>
</tbody>
</table>
The following command displays FastEthernet configuration information for the controller:

```
mc1000# show interfaces FastEthernet controller
```

Interface Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Non-Unicast Packets</td>
<td>The number of non-unicast packets received by this interface.</td>
</tr>
<tr>
<td>In Discards</td>
<td>The number of incoming packets discarded by this interface.</td>
</tr>
<tr>
<td>In Errors</td>
<td>The number of incoming packets with errors on this interface.</td>
</tr>
<tr>
<td>In Unknown Protocols</td>
<td>The number of packets with an unknown protocol received by this interface.</td>
</tr>
<tr>
<td>Out Octets</td>
<td>The number of octets sent by this interface.</td>
</tr>
<tr>
<td>Out Unicast Packets</td>
<td>The number of unicast packets sent by this interface.</td>
</tr>
<tr>
<td>Out Non-Unicast Packets</td>
<td>The number of non-unicast packets sent by this interface.</td>
</tr>
<tr>
<td>Out Discards</td>
<td>The number of outgoing packets discarded by this interface.</td>
</tr>
<tr>
<td>Out Errors</td>
<td>The number of outgoing packets with errors on this interface.</td>
</tr>
<tr>
<td>Out Queue Length</td>
<td>The number of packets in the outgoing packet queue.</td>
</tr>
</tbody>
</table>

Examples

```
Interface Table

Node Type : controller
Node ID   : 1
Node Name : controller1
Interface Index : 3
Description : eth1
MTU : 1500
Interface Speed (Mbits/sec) : 100
Duplex Mode : full-duplex
Physical Address : 00:02:b3:e6:d7:12
Operational State : Enabled
Last Changed : -
Description : eth1
In Octets : 272189914
In Unicast Packets : 1638979
In Non-Unicast Packets : 0
In Discards : 0
In Errors : 0
In Unknown Protocols : 0
Out Octets : 1467641108
Out Unicast Packets : 9827811
Out Non-Unicast Packets : 0
Out Discards : 0
Out Errors : 0
```
Related Commands
show interfaces FastEthernet statistics

Displays statistics related to the FastEthernet interface.

Syntax

```
show interfaces FastEthernet statistics [ap [ap_id] | controller]
```

Command Mode

Privileged EXEC mode

Default

None

Usage

This command displays statistics for the FastEthernet AP or controller interface. The following information is provided:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IfIndex</td>
<td>The index for identifying the interface.</td>
</tr>
<tr>
<td>Node ID</td>
<td>The unique identifier for the node (controller or AP).</td>
</tr>
<tr>
<td>Node Name</td>
<td>The name assigned to the node.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of node, for example, controller or AP.</td>
</tr>
<tr>
<td>In Octets</td>
<td>The number of octets received by this interface.</td>
</tr>
<tr>
<td>In Errors</td>
<td>The number of errors received by this interface.</td>
</tr>
<tr>
<td>Out Octets</td>
<td>The number of octets sent by this interface.</td>
</tr>
<tr>
<td>Out Errors</td>
<td>The number of errors sent by this interface.</td>
</tr>
</tbody>
</table>

Examples

The following command displays FastEthernet statistics for the controller and associated APs:

```
mc1000# show interfaces FastEthernet statistics
```

<table>
<thead>
<tr>
<th>Ethernet Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>IfIndex</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Ethernet Statistics(5 entries)
show ip

Displays IP configuration information.

Syntax

```
show ip [default-gateway | dhcp-server | dns-server | domainname]
```

Command Mode

Privileged EXEC mode

Default

Shows IP address information for the controller.

Usage

Use this command to obtain IP addresses assigned to the controller, default gateway, DHCP and DNS servers, and Domain Name.

Examples

The following command displays IP addresses using the various keywords:

```
MC1000# show ip
ID   IP Address        NetMask           Type
0    192.168.10.2      255.255.255.0     Static
IP Addresses(1 entry)

MC1000# show ip default-gateway
192.168.10.1

MC1000# show ip dhcp-server
10.0.0.10

MC1000# show ip dns-server
DNS Server
 DNS Server Table(1 entry)
 10.0.0.10

MC1000# show ip domainname
merunetworks.com
```
ip address
ip default-gateway
ip dhcp-server
ip dns-server
ip domainname
The commands for that are used to create and configure VLANs are:

- `ip address` *(linked to entry in previous chapter)*
- `ip default-gateway` *(linked to entry in previous chapter)*
- `ip dhcp-passthrough` *(linked to entry in previous chapter)*
- `ip dhcp-server` *(linked to entry in previous chapter)*
- `show vlan`
- `vlan`
show vlan

Displays configured VLAN information.

Syntax

```
show vlan [vlan]
```

`vlan` Optional. Name of the VLAN for which to show detailed information

Command Mode

Privileged EXEC

Default

By default, all configured VLANs are displayed.

Usage

To see more details about a specific VLAN, specify the VLAN name when using the `show vlan` command.

Examples

The following commands displays all configured VLANs:

```
mc1000# show vlan
VLAN Configuration

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Tag</th>
<th>IP Address</th>
<th>NetMask</th>
<th>Default Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>my_vlan</td>
<td>3</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>guests</td>
<td>1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>
```

The following command shows detailed configuration information for the `guests` VLAN.

```
mc1000# show vlan guests
VLAN Configuration

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Tag</th>
<th>IP Address</th>
<th>NetMask</th>
<th>Default Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>guests</td>
<td>1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>
```

mc1000#
Related Commands

vlan
vlan

Creates a VLAN and enters VLAN configuration mode.

Syntax

```
vlan name tag id
```

- **name** String of up to 16 alphanumeric characters long. Do not use spaces.
- **tag id** Tag number of the VLAN. Must be a value from 1 through 4,094.

Command Mode

Global configuration

Default

None

Usage

You can create up to 512 VLANs for the Meru Wireless LAN System.

Examples

The following commands assign the name *engineering* to a VLAN with a tag number of 42 and then shows help for the vlan configuration submode:

```
mc1000# vlan engineering tag 42
mc1000(config-vlan)# ?
default                Set various parameters to the default value.
do                     Executes an IOSCLI command.
end                    Save changes, and return to privileged EXEC
                         mode.
exit                   Save changes, and return to global
                         configuration mode.
ip                      Configure IP address, gateway, and DHCP
    server.
no                     Disabling various parameters.
show                    Displays various parameters.
```

Related Commands

- `show vlan`
Chapter 7
Security Commands

The commands contained in this chapter are used to configure and maintain the security profiles for the WLAN:

- `8021x-network-initiation`
- `allowed-l2-modes`
- `captive-portal`
- `clear certificates extension-type`
- `clear certificates name`
- `description`
- `encryption-modes ccmp`
- `encryption-modes tkip`
- `encryption-modes wep128`
- `encryption-modes wep64`
- `import certificate pem`
- `import certificate pfx`
- `ip-address`
- `key`
- `mac-delimiter`
- `macfiltering`
- `port`
- `psk key`
- `radius-profile`
- `radius-server primary`
- `radius-server secondary`
- `reauth`
- `rekey multicast-enable`
- `rekey period`
- `security-profile`
- `shared-authentication`
- `show aaa statistics`
- `show certificate detail`
- `show certificate installed`
- `show radius-profile`
- `show security-profile`
- `show ssl-server`
- `show web`
- `ssl-server associate pem`
- `ssl-server associate pfx`
- `ssl-server port`
- `ssl-server radius-profile`
- `static-wep key`
- `static-wep key-index`
- `vlan`
- `web login-page`
8021x-network-initiation

 Allows 802.1X authentication to be initiated by the controller.

Syntax

8021x-network-initiation

no 8021x-network-initiation

Command Mode

Security profile configuration

Default

By default, 802.1X network initiation is enabled.

Usage

802.1X network initiation is enabled by default, which allows the controller to initiate 802.1X authentication sessions. If you disable 802.1X network initiation, the controller cannot initiate any aspect of 802.1X network authentication.

When 802.1X initialization is enabled, the authenticator proactively sends an EAP-REQUEST packet to the client. When disabled, the client sends an EAP-START packet to the authenticator.

Examples

The following command disables 802.1X network authentication:

```
mc1000(config-security)# no 8021x-network-initiation
```

Related Commands

allowed-l2-modes
radius-profile
radius-server primary
radius-server secondary
allowed-l2-modes

 Defines the Layer 2 authentication mode that is permitted.

 Syntax

 allowed-l2-modes {802.1x | clear | wep | wpa | wpa-psk | wpa2 | wpa2-psk}

 802.1x Permits the IEEE 802.1X authentication mode.
 clear Does not specify an authentication mode.
 wep Permits the static WEP authentication mode.
 wpa2 Permits the Wi-Fi Protected Access 2 (WPA2) security mode.
 wpa2-psk Permits the WPA2 Pre-Shared Key (PSK) key establishment method.
 wpa Permits the Wi-Fi Protected Access (WPA) security mode.
 wpa-psk Permits the WPA Pre-Shared Key (PSK) key establishment method.

 Command Mode

 Security Profile configuration

 Default

 The default permitted Layer 2 mode is clear, by which no authentication is enforced.

 Usage

 This command determines the Layer 2 authentication mode that is assigned to a security profile. Use this command to add 802.1X, WEP, WPA2, WPA2-PSK, WPA, or WPA-PSK authentication modes.

 Note: Only one Layer 2 method can be defined in each security profile.

 WPA2-PSK or WPA-PSK can be used as an alternate key establishment method if WPA or WPA2 cannot be implemented using the 802.1X RADIUS server configuration. The WPA[2]-PSK implementation is a weaker form of security, and as such, is more suited to very small-scale sites.

 Examples

 The following command adds WPA2 as a permitted Layer 2 security mode:

 mcl000(config-security)# allowed-l2-modes wpa2
 mcl000(config-security)#

 Security Commands 139
Related Commands

- encryption-modes tkip
- encryption-modes wep128
- encryption-modes wep64
- radius-profile
captive-portal

Enables the captive portal feature.

Syntax

captive-portal \{disabled | webauth\}

no captive-portal

Syntax

disabled Disables the Captive Portal feature.
webauth Enables WebAuth for the Captive Portal.

Command Mode

Security profile configuration

Default

By default, captive portal is disabled.

Usage

Use this command to enable the Captive Portal Webauth in a security profile. If captive portal is enabled, a station attempting to associate to the ESS is directed to a WebAuth login page (the captive portal).

If captive portal is enabled for Webauth, the HTTPS protocol and Secure Socket Layer (SSL) provide an encrypted login interchange until the client station authentication and authorization is completed. A RADIUS authentication server is used as a backend to determine user access. All traffic from the client except DHCP, ARP, and DNS packets are dropped until access is granted. If access is not granted, the station is unable to leave the captive portal. If access is granted, the user is released from the captive portal and can enter the WLAN.

Use no captive-portal or captive-portal disabled to disable the captive portal feature.

Examples

The following commands enable a WebAuth captive portal for the security profile:

default# configure terminal
default (config)# security-profile web_auth
default (config-security)# captive-portal webauth
default (config-security)# radius-server primary main-auth
default (config-security)# exit
default (config)# exit

Related Commands

radius-server primary
ssl-server radius-profile
clear certificates extension-type

Removes unused PEM or PFX formatted certificate files.

Syntax

clear certificates extension-type { pem | pfx }

pem
Specifies Privacy-Enhanced Mail (PEM)-formatted files.
pfx
Specifies Personal Information Exchange (PFX)-formatted files.

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to remove PEM or PFX-formatted certificate files. This command may be useful to remove certificate files that may not be in use.

Examples

The following command removes unused PEM certificate files.

mc1000# clear certificates extension-type pem

Related Commands

clear certificates name
show certificate detail
show certificate installed
clear certificates name

Removes a named certificate file.

Syntax

\texttt{clear certificates name filename}

\textit{filename} Specifies the name of the certificate file.

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to remove a named certificate file.

Examples

The following command removes a certificate file named \texttt{certificate2.pem}.

\texttt{mc1000\# clear certificates name certificate2.pem}

Related Commands

\texttt{clear certificates extension-type}
\texttt{show certificate installed}
\texttt{show certificate detail}
description

Provides a description of the RADIUS profile server.

Syntax

description text

text Describes the RADIUS profile server. The text string can be a maximum of 128 characters and must be enclosed within double quotes.

Command Mode

RADIUS profile configuration

Default

None

Usage

Use this command to provide descriptive information about the RADIUS profile. Enclose the descriptive text within double quotation marks. A maximum of 128 characters can be used. View the description using the detailed `show radius-profile` command, that is, using the profile argument.

Examples

controller(config-radius)# description “This server is located on the Second floor of building G in the NW server area.”
controller(config-radius)# do show radius-profile RAD1

RADIUS Profile Table

<table>
<thead>
<tr>
<th>RADIUS Profile Name</th>
<th>Description</th>
<th>RADIUS IP</th>
<th>RADIUS Secret</th>
<th>RADIUS Port</th>
<th>RADIUS VLAN Name</th>
<th>MAC Address Delimiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD1</td>
<td>This server is located on the Second floor of building G in the NW server area.</td>
<td>192.168.100.1</td>
<td>*****</td>
<td>1812</td>
<td>:</td>
<td>none</td>
</tr>
</tbody>
</table>

Related Commands

radius-profile show radius-profile
encryption-modes ccmp

Configures CCMP as the security profile cipher suite.

Syntax

encryption-modes ccmp

no encryption-modes ccmp

Command Mode

Security Profile configuration

Default

No cipher is configured.

Usage

Use this command to set the cipher suite for a WPA2 security profile to CCMP, the encryption standard that is used with a WPA2 configuration.

Examples

The following command sets the encryption mode to CCMP:

```
mcl000(config-security)# encryption-modes ccmp
mcl000(config-security)#
```

Related Commands

8021x-network-initiation
radius-profile

encryption-modes tkip

Configures TKIP as the security profile cipher suite.

Syntax

```
encryption-modes tkip

no encryption-modes tkip
```

Command Mode

Security Profile configuration

Default

No cipher is configured.

Usage

Use this command to set the cipher suite for the security profile to Temporal Key Integrity Check (TKIP). As part of the Wi-Fi Protection Access (WPA) solution to address the weaknesses in WEP, TKIP expands the size of the encryption key, increases the number of keys in use, and creates a message integrity checking mechanism. The other part of the WPA solution that should be implemented to ensure increased over-the-air data protection is the access control and key rotation provided by 802.1X, using one of the standard Extensible Authentication Protocol types (see `radius-profile` for 802.1X setup).

TKIP is a Layer 2 encryption algorithm that uses a 128-bit key and a 64-bit Initialization Vector (IV). TKIP uses the RC4 algorithm along with a symmetrical key to produce encrypted text. The symmetrical key is used for encrypting and decrypting text, and can be automatically distributed to an AP or user station when the 802.1X EAP solution is also implemented. TKIP uses the Message Integrity Check (MIC) to make sure the content of the data packets have not been changed during packet transmission.

Examples

The following command sets the encryption mode to TKIP:

```
mc1000(config-security)# encryption-modes tkip
mc1000(config-security)#
```

Related Commands

- `8021x-network-initiation`
- `radius-profile`
encryption-modes wep128

Configures WEP-128 as the security profile cipher suite.

Syntax

encryption-modes wep128

no encryption-modes wep128

Command Mode

Security Profile configuration

Default

By default, no cipher suite is configured.

Usage

Use this command to set the cipher suite for the security profile to WEP-128, also known as WEP2. WEP-128 is a Layer 2 encryption algorithm that uses a 104-bit key and a 24-bit Initialization Vector (IV). WEP2 uses the RC4 algorithm along with a symmetrical key to produce encrypted text. The symmetrical key is used for encrypting and decrypting text, and is manually distributed to an AP or user station, as opposed to being automatically generated. The key is in use until it is changed by the administrator. Alternately, you can configure the security profile to also use the 802.1X protocol to automatically generate the key, producing “Dynamic WEP,” a more secure form of WEP.

Examples

The following command sets the encryption mode to WEP-128:

mc1000(config-security)# encryption-modes wep128
mc1000(config-security)#

Related Commands

8021x-network-initiation
allowed-l2-modes
encryption-modes wep64
rekey period
static-wep key
encryption-modes wep64

Configures WEP-64 as the security profile cipher suite.

| Syntax | encryption-modes wep64
| | no encryption-modes wep64

Command Mode

Security Profile configuration

Default

By default, no cipher suite is configured.

Command Mode

Use this command to set the cipher suite for the security profile to WEP-64, a weaker form of encryption than WEP-128. WEP-64 (also known as WEP or WEP40) is a Layer 2 encryption algorithm that uses a 40-bit key and a 24-bit Initialization Vector (IV). WEP uses the RC4 algorithm along with a symmetrical key to produce encrypted text. The symmetrical key is used for encrypting and decrypting text, and is manually distributed to an AP or user station, as opposed to being automatically generated. The key is in use until it is changed by the administrator. Alternately, you can configure the security profile to also use the 802.1X protocol to automatically generate the key, producing “Dynamic WEP,” a more secure form of WEP.

Examples

The following command sets the encryption mode to WEP-64:

```
mc1000(config-security)# encryption-modes wep64
mc1000(config-security)#
```

Related Commands

- `8021x-network-initiation`
- `allowed-l2-modes`
- `encryption-modes wep128`
- `rekey period`
- `static-wep key`
import certificate pem

Imports a PEM certificate file from the Certificate Server.

Syntax

import certificate pem url [local-filename]

url

The URL of the Certificate Server where the certificate file will be imported from.

local-filename

Optional. Specifies the name of the file where the certificate file will be downloaded to.

Command Mode

Privileged EXEC

Default

None

Usage

This command imports a Privacy-Enhanced Mail (PEM)-formatted certificate file from a valid Certificate Server for the controller. The certificate file is needed by the SSL server to ensure a secure connection. After importing the certificate file, it should be associated with the SSL server using the ssl-server associate pem command.

Examples

The following command imports a file from the Certificate Server at www.CertsUnlimited.com to the local file certificate1.pem:

mc1000# import certificate pem www.CertsUnlimited.com certificate1.pem

Related Commands

ssl-server associate pem
show certificate installed
show certificate detail
import certificate pfx

Imports a PFX certificate file from the Certificate Server.

Syntax
import certificate pfx url [local-filename]

url
The URL of the Certificate Server where the certificate file will be imported from.

local-filename
Optional. Specifies the name of the file where the certificate file will be downloaded to.

Command Mode
Privileged EXEC

Default
None

Usage
This command imports a Personal Information Exchange (PFX)-formatted certificate file from a valid Certificate Server for the controller. The certificate file is needed by the SSL server to ensure a secure connection. After importing the certificate file, it should be associated with the SSL server using the ssl-server associate pfx command.

Examples
The following command imports a file from the Certificate Server at www.CertsUnlimited.com to the local file certificate1.pfx:

mc1000# import certificate pem www.CertsUnlimited.com certificate1.pfx

Related Commands
ssl-server associate pfx
show certificate installed
show certificate detail
ip-address

Sets the IP address for the profiled RADIUS server.

Syntax

```
ip-address address
```

address The IP address of the profiled RADIUS server.

Command Mode

RADIUS server profile configuration mode.

Default

Usage

This command sets the IP address of the server being configured for the RADIUS profile. The RADIUS server is a key component of 802.1X WLAN security, as it provides access management by checking an access list to authenticate a user that attempts to join the WLAN. Many sites configure a primary and secondary RADIUS server to ensure the continued availability of the authentication service, should the primary server become unavailable.

A RADIUS server IP address and passkey are required for configuration.

After the profile for the RADIUS server is configured, use the `radius-profile primary` and `radius-profile secondary` commands to enable the authentication service.

Examples

```
mcl000(config-radius)# ip-address 10.2.2.2
```

Related Commands

- `key`
- `mac-delimiter`
- `radius-profile`
- `port`
- `radius-server primary`
- `radius-server secondary`
- `show radius-profile`
key

Configure the profiled RADIUS server secret key.

Syntax

key secret

secret Specifies the secret key used by the RADIUS server. A maximum of 64 characters is permitted.

Command Mode

RADIUS server profile configuration mode.

Default

No key is assigned.

Usage

Use this command to set the secret key for the RADIUS server being configured in the RADIUS server profile.

Examples

The following command sets the key for the profiled RADIUS server to mysecret:

```
mc1000(config-radius)# key mysecret
mc1000(config-radius)#
```

Related Commands

radius-profile
mac-delimiter

Sets the delimiter character for the RADIUS server profile.

Syntax

```
mac-delimiter {colon  hyphen  none}
no mac-delimiter
```

colon Specifies the delimiter to the colon character (:).
hyphen Specifies the delimiter to the hyphen character (-).
singlehyphen Specifies the delimiter as a single hyphen character (-) between each of 3 octets (e.g. abcd-def-abc-def).
none Specifies that no delimiter is to be used (default).

Command Mode

RADIUS server profile configuration mode.

Default

By default, no delimiter is assigned.

Usage

This command sets the delimiter character for the RADIUS server profile. It specifies the delimiter that is used on the RADIUS server to separate records within the server database.

Examples

```
mc1000(config-radius)# mac-delimiter colon
```

Related Commands

radius-profile ip-address key port radius-server primary radius-server secondary
macfiltering

Enables MAC filtering for a security profile.

Syntax	macfiltering
	no macfiltering

Command Mode	Security Profile configuration
Default	By default, MAC filtering is enabled.

Usage

This command allow you to enable and disable MAC filtering for a security profile. The command is useful to override the global MAC filtering setting for an ESS by using the **no macfiltering** command from within the security profile.

Examples

The following command disables MAC filtering for the security profile.

mc1000(config-security)# no macfiltering

Related Commands

- access-list permit
port

Sets the port number for the RADIUS server profile.

Syntax

```
port port
```

| port | Specifies the port to be used in the RADIUS Authentication server profile. Valid port numbers are from 1024 to 65535. By default, port 1812 is set. Port 1813 should be used for an Accounting RADIUS server. |

Command Mode

RADIUS server profile configuration mode.

Default

By default, port 1812 is assigned.

Usage

This command sets the port used for the RADIUS server profile. Usually this setting does not need to be changed unless the profile is used for a RADIUS accounting server, in which case it should be changed to 1813.

Examples

```
mc1000(config-radius)# port 6600
```

Related Commands

- `ip-address`
- `key`
- `radius-server primary`
- `radius-server secondary`
- `radius-profile`
- `port`
- `show radius-profile`
Sets a WPA-Personal or WPA2-Personal Passphrase (or “preshared key”).

Syntax

psk key key

no psk key

key

A pre-shared key. The key can be from 8 to 63 ASCII characters or 64 hex characters. Hex keys must be prefixed with “0x” or the key will not work.

Command Mode

Security profile configuration mode.

Default

No key is set.

Usage

The Wi-Fi Protected Access (WPA and WPA2) standard offers a more secure environment including improved and stronger authentication using 802.1X. If your site does not implement RADIUS servers, the WPA/WPA2 Passphrase is available as an improvement over the WEP64 and WEP128 shared key implementations.

The WPA-Personal and WPA2-Personal allow a longer shared secret key (256 bits) than that provided by WEP64 or WEP128. Assign 1 PSK per ESSID that uses this security profile. The key will be distributed to the ESSID APs. Clients joining the APs must have configured the same shared key prior to association.

Even though the Passphrase is more secure, managing the key is not automatic and presents some inconvenience because all client stations and APs in the WLAN need be updated each time the password changes. Passwords should be changed frequently to avoid detection.

WPA/WPA2 Passphrase can use keys containing either:

- 64 hexadecimal characters (that is, 0-9,a-f, A-F). Example: 0xa0a1a2a3a4a5a6a7a8a9aaabac or 0x12345678901234567890abcdef...
- 8 to 63 ASCII characters (all keyboard characters). Example: m6o0secret79ckey

Use the no psk key command to disable static WPA/WPA2 Passphrases.

Note: If using a hexadecimal key, you must preface the key input with the 0x characters. The 0x characters notify the system that a hexadecimal key is being input.
Examples

The following command creates the WPA/WPA2 Passphrase:

```
mc1000(config-security)# psk key 012345678901234567890abcdef
```

Related Commands

allowed-l2-modes
radius-profile

Creates a profile for a RADIUS Server and enters RADIUS Server configuration mode.

Syntax

radius-profile name

no radius-profile name

name

The name for the profiled RADIUS Server. The name can be a maximum of 16 characters

Command Mode

Global configuration mode

Default

Usage

This command creates a profile for a RADIUS Server. The RADIUS Server is a key component of 802.1X WLAN security, as it provides access management by checking an access list to authenticate a user that attempts to join the WLAN. Many sites configure a primary and secondary RADIUS Server to ensure the continued availability of the authentication service, should the primary server become unavailable.

From within the profile configuration, a RADIUS server IP address and passkey are required using the ip-address and key commands. An optional description, port number, and record delimiter may also be specified using the description, port, and mac-delimiter commands.

After a RADIUS server profile is configured, use the radius-server primary or radius-server secondary command from within a security profile configuration to establish a relation to the newly configured profiles and determine the primary or secondary ranking of the server.

RADIUS profiles are also used for RADIUS accounting server configuration and MAC address ACLs (see the links in Related Commands section).

Use the no form to remove a profile for a RADIUS Server.

Examples

mc1000(config)# radius-profile main-auth
mc1000(config-radius)# ?
default Set radius profile parameters to default value.
description Specifies the radius node.
do Executes an IOSCLI command.
end Save changes, and return to privileged EXEC mode.
exit Save changes, and return to global configuration mode.

ip-address Configures the IP address.
key Configures the secret key.
mac-delimiter Configures the MAC Delimiter.
no Disabling radius profile parameters.
port Configures port number.
vlan Configures the VLAN.

Related Commands

description
ip-address
key
mac-delimiter
port
vlan
accounting primary-radius
accounting secondary-radius
radius-server primary
radius-server secondary
access-list radius-server
radius-server primary

Assigns and enables a primary RADIUS server specified in the profile.

Syntax

```
radius-server primary profile
no radius-server primary
no radius-server all
```

profile Specifies the name of the RADIUS server profile that was created with the `radius-profile` command.

Command Mode Security Profile configuration

Usage

This command assigns and enables the primary RADIUS server specified in the profile that has been configured with the `radius-profile` command. Use this command as the last step in the RADIUS server configuration. The profile must exist before it can be assigned with this command.

Note: Ensure the profile for RADIUS server configuration uses the appropriate port: 1812—RADIUS Authentication Server default port.

Use the `no radius-server all` command to disable the primary and secondary RADIUS servers or the `no radius-server primary` command to disable the primary RADIUS server.

Examples

The following command assigns the profile `main-auth` as the primary RADIUS server:

```
mc1000(config-security)# radius-server primary main-auth
```

Related Commands

- `radius-profile`
- `radius-server secondary`
- `show radius-profile`
radius-server secondary

Assigns and enables the secondary RADIUS server specified in the profile

Syntax

radius-server secondary profile

no radius-server secondary

profile Specifies the name of the RADIUS server profile that was created with the radius-profile command.

Command Mode

Security Profile configuration

Usage

This command assigns and enables the secondary RADIUS server specified in the profile that has been configured with the radius-profile command. Use the command as the last step in the RADIUS server setup. The profile must exist before it can be enabled with this command.

Use the command no radius-server secondary to disable the secondary RADIUS server.

Examples

The following command assigns the backup-auth profile as the secondary RADIUS server:

mcl000(config-security)# radius-server secondary backup-auth

Related Commands

radius-profile
radius-server primary
show radius-profile
reauth

Enables reauthentication.

Syntax

```plaintext
reauth
no reauth
```

Command Mode

Security Profile configuration

Default

By default, reauthentication is disabled.

Usage

This command allows you to enable and disable reauthentication for a security profile.

Examples

The following command enables reauthentication for the security profile.

```plaintext
mci00(config-security)# reauth
```
rekey multicast-enable

Enables multicast keying.

Syntax

`rekey multicast-enable`

`no rekey multicast-enable`

Command Mode

Security Profile configuration

Default

By default, multicast rekeying is disabled.

Usage

WEP uses different keys for unicast traffic and broadcast traffic. The unicast key is used when a user logs on, is unique for the session, and can be changed depending on the rekey period value. A different key is used for multicast traffic. The multicast key must be the same for all users on a particular VLAN or subnet and radio because users sharing the same VLAN and radio see the same broadcasts. These keys should be rolled frequently—ideally every 15-30 minutes. Use the `no rekey multicast-enable` command to disable multicast keys.

Examples

The following command enables multicast rekeying.

```
mc1000(config-security)# rekey multicast-enable
```

Related Commands

`rekey period`
rekey period

Sets the interval for 802.1X key regeneration.

Syntax

rekey period seconds

no rekey period

seconds Specifies the amount of time in seconds that an 802.1X key is valid. seconds can be a value between 0 and 65535.

Command Mode

Security Profile configuration

Default

The default rekey period is 0.

Usage

This command defines the interval that an 802.1X key is valid. After the amount of time specified by seconds has elapsed, a new key is automatically generated. Frequently changing the key is recommended to prevent security breaches.

When 0 is specified, rekeying is disabled and the key is valid for the entire session, regardless of the session duration.

Use the no rekey period command to disable key regeneration.

Examples

The following command changes the 802.1X key every 300 seconds (5 minutes):

mc1000(config-security)# rekey period 300

Related Commands

rekey multicast-enable
security-profile

 Creates a security profile and enters security profile configuration mode.

Syntax

security-profile name

no security-profile name

name

Unique text string up to 32 alphanumeric characters long. To use spaces and special characters, enclose them in double quotation marks (" ").

Command Mode

Global configuration

Default

The *default* security profile is provided.

Usage

The controller supports the ability to define multiple security profiles that can be assigned to different wireless LAN extended service sets (ESS) according to the level and type of security required. A security profile is a list of parameters that define how security is handled within an ESS. With security profiles, you can define the Layer 2 security method, including the cipher suite, primary and secondary RADIUS server, static WEP key entries and key index position, and other parameters. The various security profiles you create allow you to support multiple authentication and encryption methods within the same WLAN infrastructure.

Note: Only one Layer 2 method can be defined in each security profile, although the same WEP key index settings can be used in several security profiles.

By default, the Meru Wireless LAN System contains a security profile named *default*, which uses OPEN authentication, meaning that there is no authentication, and that any wireless client can connect to the controller. The *default* profile is automatically associated with an ESSID when it is created.

Use the **no** form to delete a security profile. You can only delete a security profile if no ESSID specifies it. You cannot delete the *default* security profile.

Examples

The following commands create a security profile called *profile 1*, enter security profile configuration mode, and list the available commands:

```
mc1000(config)# security-profile "profile 1"
mc1000(config-security)#?
8021x-network-initiation Enable 802.1x network initiation.
```
allowed-l2-modes Configure permitted L2 authentication modes.
captive-portal Enable captive portal.
do Executes an IOSCLI command.
end Configure permitted cipher suites.
exit Save changes, and return to privileged EXEC mode.
exit configuration mode. Save changes, and return to global mode.
macfiltering Enable MAC Filtering.
no Configure authentication parameters.
psk Configure the encryption WPA Pre-shared key.
radius-server Configure RADIUS security.
reauth Enable reauthentication.
rekey Configure rekey period and related parameters.
shared-authentication Enable shared authentication.
show Displays various parameters.
static-wep Configure the static WEP key.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>essid</td>
<td></td>
</tr>
<tr>
<td>security-profile</td>
<td></td>
</tr>
<tr>
<td>show security-profile</td>
<td></td>
</tr>
</tbody>
</table>
shared-authentication

Enables shared authentication.

Syntax

- `shared-authentication enable`
- `no shared-authentication`

Command Mode

Security profile configuration

Default

Shared authentication is off.

Usage

Use this command to enable shared authentication.

For networks that do not use WiFi Protected Access (WPA), you can use open authentication with Wireless Encryption Protocol (WEP) encryption. Use the `no shared-authentication` command to disable shared authentication with WEP. This helps provide additional security for your wireless network and helps protect your wireless network from intrusions by malicious users. If you use a shared key instead of open authentication with WEP encryption, the malicious user can easily decrypt the shared key to obtain access to all the computers in your wireless network.

Examples

Related Commands
show aaa statistics

Displays detailed information about authentication statistics.

Syntax

```
show aaa statistics
```

Command Mode

EXEC

Usage

Use this command to view statistics about the 802.1X performance. The authentication statistics are reset when the controller is rebooted.

The aaa statistics are:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1x Authentication Request Count</td>
<td>Total number of 802.1x authentication requests.</td>
</tr>
<tr>
<td>802.1x Authentication Success Count</td>
<td>Number of successful authentication requests.</td>
</tr>
<tr>
<td>802.1x Authentication Failure Count</td>
<td>Number of failed authentication requests.</td>
</tr>
<tr>
<td>802.1x Authentication Station Count</td>
<td>Number of stations currently authenticated by 802.1x.</td>
</tr>
</tbody>
</table>

Examples

The following command shows 802.1X statistics:

```
mcl0000# show aaa statistics
Authentication Statistics

  802.1x Authentication Request Count : 519
  802.1x Authentication Success Count : 54
  802.1x Authentication Failure Count : 465
  802.1x Authentication Station Count : 481
```
show certificate detail

Displays detailed information about installed certificates.

Syntax

```
show certificate detail [filename]
```

`filename` Optional. Names a specific certificate file.

Command Mode

EXEC

Default

By default, information on all installed certificates is shown.

Examples

The following command shows certificate details:

```
mc1000# show certificate detail
Certificate: 
  Data:
    Version: 3 (0x2)
    Serial Number: 0 (0x0)
    Signature Algorithm: sha1WithRSAEncryption
    Issuer: CN=mmca.merunetworks.com, ST=California,
    C=US/Email=support@merunetworks.com, O=Meru Networks, Inc.
    Validity
      Not Before: Feb 1 00:43:57 2004 GMT
      Not After : Jan 29 00:43:57 2014 GMT
    Subject: CN=Controller, ST=California,
    C=US/Email=support@merunetworks.com, O=Meru Networks, Inc.
    Subject Public Key Info:
      Public Key Algorithm: rsaEncryption
      RSA Public Key: (1024 bit)
        Modulus (1024 bit):
      Exponent: 65537 (0x10001)
    X509v3 extensions:
      X509v3 Basic Constraints:
        CA:FALSE
      Signature Algorithm: sha1WithRSAEncryption
```
Related Commands

show certificate installed
show certificate installed

Displays the certificates installed on the controller.

Syntax

show certificate installed

Command Mode

EXEC

Default

None

Usage

The command displays the following information:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Name of the certificate file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer CN</td>
<td>Common name (CN) of the certificate issuer.</td>
</tr>
<tr>
<td>Subject CN</td>
<td>Certificate subject's common name.</td>
</tr>
<tr>
<td>Not Valid Before</td>
<td>Date the certificate becomes valid.</td>
</tr>
<tr>
<td>Not Valid After</td>
<td>Date the certificate becomes invalid.</td>
</tr>
</tbody>
</table>

Examples

The following command displays the certificates installed on the controller:

mc1000# show certificate installed
List of Certificates

<table>
<thead>
<tr>
<th>File Name</th>
<th>Issuer CN</th>
<th>Subject CN</th>
<th>Not Valid Before</th>
<th>Not Valid After</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller.pem</td>
<td>mmca.merunetworks.com Controller</td>
<td>Controller</td>
<td>Feb 1 00:43:57</td>
<td>Jan 29 00:43:57</td>
</tr>
</tbody>
</table>

List of Certificates(1 entry)

Related Commands

show certificate detail
show radius-profile

Displays the configured RADIUS profiles.

Syntax

```
show radius-profile [name]
```

name Optional. Specifies the name of the profile to display.

Command Mode

Privileged EXEC

Default By default, a list of all RADIUS profiles is shown.

Usage This command lists all RADIUS profiles that have been created with the `radius-profile` command, or with the optional argument, lists the details of the profile specified by `name`.

Examples The following command displays configured RADIUS profiles:

```
mc1000# show radius-profile

Profile Name      RADIUS IP        Port        Delimiter
MyRad             192.168.100.1    1812        none
RADIUS Profile Table (1 entry)
```

The following command displays the MyRad RADIUS profile:

```
mc1000# show radius-profile MyRad

RADIUS Profile Table

RADIUS Profile Name :MyRad
Description :
RADIUS IP :192.168.100.1
RADIUS Secret :*****
RADIUS Port :1812
RADIUS VLAN Name :
MAC Address Delimiter :none
```

Related Commands

`radius-profile`
show security-profile

Displays the configured security profiles.

Syntax

```
show security-profile [name]
```

name
Optional. Specifies the name of the profile to display.

Command Mode
Privileged EXEC

Default
By default, a list of all security profiles is shown.

Usage
This command lists all security profiles that have been created with the `security-profile` command, or with the optional argument, lists the details of the profile specified by *name*.

Examples
The following command displays configured security profiles:

```
mc1000# show security-profile

# sh security-profile

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>L2 Mode</th>
<th>Data Encrypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>clear</td>
<td>none</td>
</tr>
<tr>
<td>captive-portal</td>
<td>clear</td>
<td>none</td>
</tr>
<tr>
<td>wep</td>
<td>wep</td>
<td>wep64</td>
</tr>
<tr>
<td>802.1x</td>
<td>802.1x</td>
<td>wep128</td>
</tr>
<tr>
<td>wpa</td>
<td>wpa</td>
<td>tkip</td>
</tr>
<tr>
<td>wpapsk</td>
<td>wpa-psk</td>
<td>tkip</td>
</tr>
<tr>
<td>wpa2</td>
<td>wpa2</td>
<td>ccmp</td>
</tr>
<tr>
<td>wpa2psk</td>
<td>wpa2-psk</td>
<td>ccmp</td>
</tr>
</tbody>
</table>

Security Profile Table(8)
```

```
mc1000# show security-profile wpapsk

Security Profile Table

<table>
<thead>
<tr>
<th>Security Profile Name</th>
<th>L2 Modes Allowed</th>
<th>Data Encrypt</th>
<th>Primary RADIUS Profile Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wpa-psk</td>
<td>tkip</td>
<td></td>
</tr>
</tbody>
</table>
```
Secondary RADIUS Profile Name :
WEP Key (Alphanumeric/Hexadecimal) : ******
Static WEP Key Index : 1
Re-Key Period (seconds) : 0
Enable Multicast Re-Key : off
Enable Captive Portal : disabled
802.1X Network Initiation : on
Enable Shared Key Authentication : off
Pre-shared Key (Alphanumeric/Hexadecimal) : ******
Enable Reauthentication : off
MAC Filtering : on

mc1000# show security-profile wpapeap
Security Profile Table

<table>
<thead>
<tr>
<th>Security Profile Name</th>
<th>: wpapeap</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 Modes Allowed</td>
<td>wpa</td>
</tr>
<tr>
<td>Data Encrypt</td>
<td>tkip</td>
</tr>
<tr>
<td>Primary RADIUS Profile Name</td>
<td>snow_ias</td>
</tr>
<tr>
<td>Secondary RADIUS Profile Name</td>
<td>:</td>
</tr>
<tr>
<td>WEP Key (Alphanumeric/Hexadecimal)</td>
<td>******</td>
</tr>
<tr>
<td>Static WEP Key Index</td>
<td>0</td>
</tr>
<tr>
<td>Re-Key Period (seconds)</td>
<td>0</td>
</tr>
<tr>
<td>Enable Multicast Re-Key</td>
<td>off</td>
</tr>
<tr>
<td>Enable Captive Portal</td>
<td>disabled</td>
</tr>
<tr>
<td>802.1X Network Initiation</td>
<td>on</td>
</tr>
<tr>
<td>Enable Shared Key Authentication</td>
<td>off</td>
</tr>
<tr>
<td>Pre-shared Key (Alphanumeric/Hexadecimal)</td>
<td>******</td>
</tr>
<tr>
<td>Enable Reauthentication</td>
<td>off</td>
</tr>
<tr>
<td>MAC Filtering</td>
<td>on</td>
</tr>
</tbody>
</table>

Related Commands security-profile
show ssl-server

Displays the configured SSL servers.

Syntax

show ssl-server

Command Mode

Privileged EXEC

Default

By default, a list of all SSL servers is shown.

Usage

This command lists all SSL servers that are active.

Examples

The following command displays configured SSL servers:

```
mc1000# show ssl-server
SSL Server

Name : cp-ssl
Server Port : 10101
User Authentication Protocol : None
Server Lifetime : 100
Server IP : 192.168.10.2
Certificate : controller.pem
RADIUS Profile Name : cp-IAS
Secondary RADIUS Profile Name :
```

Related Commands

ssl-server radius-profile

ssl-server port
show web

Displays web server configuration information.

Syntax

show web { login-page | custom-area }

Command Mode

Privileged EXEC

Default

Usage

Use the `show web login-page` to display the type of page that is displayed for Captive Portal and WebAuth at client login. If the default login page is in use, the command returns the word `default`.

Use the `show web custom-area` to list files that are used for a customized Captive Portal/WebAuth implementation. If the default login page is in use, the command lists the `empty.html` and `empty.gif` files.

Examples

The following command shows the default Captive Portal/WebAuth login page is in use:

```
mc1000# show web login-page
default
```

The following command shows the default Captive Portal/WebAuth login page is in use:

```
mc1000# show web custom-area
Html Files
total 0
-rwx------    1 root     root            0 Mar  7 21:55 empty.html
Image Files
total 0
-rwx------    1 root     root            0 Mar  7 21:55 empty.gif
```
ssl-server associate pem

 Associates a certificate file with the SSL server.

Syntax

ssl-server associate pem certificate

certificate Filename of the certificate, ending with a .pem extension. The filename cannot be longer than 128 alphanumeric characters long.

Command Mode

Global configuration

Usage

This command associates the Privacy-Enhanced Mail (PEM) formatted certificate file with the SSL server. The certificate file can be downloaded to the controller with the import certificate pem command so that it is local when it is associated. The certificate association must exist before an SSL connection to authenticate a username and password can be performed.

Examples

The following command associates the certificate file controller.pem with the SSL server:

mc1000(config)# ssl-server associate pem controller.pem

Related Commands

import certificate pem
ssl-server associate pfx

 Associates a certificate file with the SSL server.

Syntax

```plaintext
ssl-server associate pfx certificate password
```

- `certificate` - Filename of the certificate, ending with a .pem extension. The filename cannot be longer than 128 alphanumeric characters long.
- `password` - Password associated with the certificate. The password cannot be longer than 64 alphanumeric characters long.

Command Mode

Global configuration

Default

None

Usage

This command associates the Personal Information Exchange (PFX)-formatted certificate file with the SSL server. The certificate file can be downloaded to the controller with the `import certificate pfx` command so that it is local when it is associated. The certificate association must exist before an SSL connection to authenticate a username and password can be performed.

Examples

The following command associates the certificate file controller.pfx with the SSL server:

```plaintext
mcl000(config)# ssl-server associate pfx controller.pfx
```

Related Commands

- `import certificate pfx`
ssl-server port

Specifies the SSL server’s TCP port number.

Syntax

ssl-server port port-number

port-number

TCP port number in the range of 1024 through 65,535.

Command Mode

Global configuration

Default

The default port number for the SSL server is 10101.

Usage

Specifies the SSL server’s TCP port number.

Examples

The following command specifies the SSL server’s port number as 12345:

```
mc1000(config)# ssl-server port 12345
mc1000(config)#
```
ssl-server radius-profile

Sets the RADIUS profile name where the RADIUS server parameters are configured.

Syntax

ssl-server radius-profile {primary | secondary} profile-name

ssl-server no-1st-radius

ssl-server no-2nd-radius

profile-name Names the file containing the RADIUS server configuration information. Text string of up to 32 alphanumeric characters. Do not use spaces.

Command Mode

Global configuration

Default

Usage

This command specifies the RADIUS profile name where the RADIUS server parameters for a primary or secondary RADIUS server are specified for use by the SSL server.

The ssl-server no-1st-radius command disables a previously configured primary RADIUS profile for use by the SSL server.

The ssl-server no-2nd-radius command disables a previously configured secondary RADIUS profile for use by the SSL server.

Examples

The following command configures the SSL Server to use the primary RADIUS server settings profile main:

mc1000(config)# ssl-server radius-profile primary main
mc1000(config)#

Related Commands

radius-profile
static-wep key

Configures a static WEP key.

Syntax

```
static-wep key key
no static-wep key
```

key

- For WEP64, the key is a 5-character ASCII or 10-character hex key.
- For WEP128, the key must be 13 ASCII characters or 26 hex digits.

Command Mode

Security profile configuration

Default

None

Usage

802.11 WEP (wired equivalent privacy) uses MAC-level encryption of data between a mobile unit and an AP. Once the frame enters the wired side of the network, such as between access points, WEP no longer applies.

WEP64, also known as WEP40, is more widespread and uses keys containing either:

- 10 hexadecimal characters (that is, 0-9,a-f, A-F). Example: 0x0123456789
- 5 ASCII characters (all keyboard characters). Example: 01234 or mykey

WEP128 is more secure though not as widespread and uses keys containing either:

- 26 hexadecimal characters (that is, 0-9,a-f, A-F). Example:
 0xa0a1a2a3a4a5a6a7a8a9aaabac or 0x12345678901234567890abcdef
- 13 ASCII characters (all keyboard characters). Example: my-secret-key

Use the **no static-wep key** command to disable static WEP keys.

Note: If using a hexadecimal key, you must preface the key input with the 0x characters. The 0x characters notify the system that a hexadecimal key is being input.

Examples

The following command specifies a WEP key of *wpass*:

```
mc1000(config-security)# static-wep key wpass
mc1000(config-security)#
```
Related Commands

- encryption-modes wep128
- encryption-modes wep64
- static-wep key-index
static-wep key-index

Configures the index position of a static WEP key.

Syntax

static-wep key-index position

position Static WEP key index position. position may be from 1 to 4.

Command Mode

Security profile configuration

Default

Usage

This command specifies the use of one of the four possible static WEP keys that can be configured by the user station key management program. The key index feature provides interoperability if the user program can configure four key settings.

Examples

The following command specifies that the third WEP key be used:

mc1000(config-security)# static-wep key-index 3
mc1000(config-security)#

Related Commands

static-wep key
encryption-modes wep128
encryption-modes wep64
security-profile
vlan

Configures a VLAN for the primary RADIUS server.

Syntax

```
vlan

no vlan name
```

Command Mode

RADIUS server profile configuration mode.

Default

Usage

This command configures a VLAN for the RADIUS server profile. Use the command if the RADIUS server being profiled is located on a VLAN so that RADIUS requests are sent to the VLAN interface instead of default/untagged interface. Typing a ? after the command lists the available VLAN names that can be assigned.

Use the no form to delete a VLAN entry.

Examples

The following command displays VLAN names that can be configured for the primary RADIUS server:

```
mc1000(config-radius)# vlan ?
<vlan>                 Configures VLAN name for the primary RADIUS server.
   drop_vlan
   guest
   meru-svp
   vlan100
   vlan101
   vlan_polycom

mc1000(config-radius)# vlan vlan100
```

Related Commands

radius-profile
web login-page

Configures the Captive Portal/WebAuth login page.

Syntax

web login-page {custom | default}

Command Mode

Global configuration mode.

Default

Meru default login page.

Usage

Use the command web login-page custom to activate a custom page that is displayed as the site’s Captive Portal/WebAuth login.

Note: You must use the Web UI to download the generic files, modify them, and then upload customized .html and .gif files for the custom option to work. From the Detailed>Maintenance>Captive Portal area, click the Customization link and the Get Files button to obtain the files. Once you have modified the generic files, use the Import Files link to upload the files. Then to activate the pages, use the command web login-page custom or go to the Customization link Step 2--Change the Mode and select the Customized radio button.

Use the web login-page default change to the default login page.
Chapter 8
ESSID Commands

The commands contained in this chapter are used to create and manage ESSIDs. Included are commands that enable/disable features such as RADIUS accounting, Remote APs, and VLANs. Also included are many commands that allow fine-tuning of the default broadcast settings for implementations with unique requirements.

- accounting interim-interval
- accounting primary-radius
- accounting secondary-radius
- ap-discovery join-ess
- ap-discovery join-virtual-ap
- base-tx-rates
- beacon dtim-period
- beacon period
- calls-per-bss
- ess-ap
- essid
- l2bridge ipv6
- multicast-enable
- publish-essid
- remote-ap-enable
- security-profile
- show ess-ap
- show essid
- silent-client-enable
- ssid
- supported-tx-rates
- vlan name
- vlan support
accounting interim-interval

Specifies the amount of time that elapses before the controller sends an Interim-Update record to the RADIUS accounting server.

Syntax

`accounting interim-interval value`

`value` Number of seconds that elapse before Interim-Update records are sent. The interval must be from 600 through 3,600 seconds (10 minutes through 1 hour).

Command Mode

ESSID configuration

Default

The default accounting interim interval value is 3,600 seconds.

Usage

If RADIUS accounting is enabled, the controller sends an Accounting-Start record to the RADIUS accounting server after receiving an Access-Accept response from the RADIUS server. When the client session times out or the client is disassociated, the controller sends an Accounting-Stop record to the RADIUS server. If the Access-Accept response contained the Acct-Interim-Interval attribute, the controller sends Interim-Update records at the interval configured with the `accounting interim-interval` command for the duration of the client session.

Examples

The following command sets the accounting interim interval to 1,800 seconds (30 minutes):

```
mc1000(config-essid)# accounting interim-interval 1800
mc1000(config-essid)#
```

Related Commands

`accounting primary-radius`

`accounting secondary-radius`
accounting primary-radius

Specifies the primary RADIUS Accounting server.

Syntax

accounting primary-radius profile

no accounting-radius all

profile Name of the RADIUS Accounting server profile, specified with the radius-profile command.

Command Mode

ESSID configuration

Default

By default, communications between the controller and the primary RADIUS Accounting server are disabled.

Usage

Use the accounting primary-radius command to set up and enable communications between the controller and the primary RADIUS Accounting server. When RADIUS Accounting is enabled, the controller sends accounting records to the RADIUS Accounting server for clients who authenticate using 802.1X. (To see a list of the accounting attributes that are tracked, see the “Configuring RADIUS Accounting,” in Chapter 7, “Configuring Multiple ESSIDs,” in the Meru Wireless LAN System Configuration Guide.

Note: Do not use the RADIUS Authentication Server for this configuration. The Authentication Server configuration will not work, as the RADIUS Accounting Server uses port 1813 instead of port 1812.

RADIUS Accounting server configuration information, such as IP address, port (1813 is the standard port for accounting), and secret key, is specified using the radius-profile command.

Use the no accounting-radius all command to disable the accounting primary radius server.

Examples

The following command sets the server information in the profile main-acct for the primary RADIUS accounting server:

mc1000(config-essid)# accounting primary-radius main-acct
mc1000(config-essid)#

Related Commands

accounting interim-interval
radius-profile
accounting secondary-radius
accounting secondary-radius

Specifies the secondary RADIUS accounting server.

Syntax

`accounting secondary-radius profile`

`no accounting-radius secondary`

`no accounting-radius all`

`profile` Name of the RADIUS server profile, specified with the `radius-profile` command.

Command Mode

ESSID configuration

Default

By default, communications between the controller and the secondary RADIUS accounting server are disabled.

Usage

You can specify a secondary RADIUS accounting server that the controller sends accounting records to if the primary RADIUS accounting server is offline. Use the `accounting secondary-radius` command to enable communications with the secondary RADIUS accounting server.

Use `no accounting-radius secondary` or `no accounting-radius all` to disable communication with the secondary RADIUS accounting server.

When RADIUS accounting is enabled, the controller sends accounting records to the RADIUS accounting server for clients who authenticate using 802.1X. (To see a list of the accounting attributes that are tracked, see the “Configuring RADIUS Accounting,” in Chapter 7, “Configuring Multiple ESSIDs,” in the Meru Wireless LAN System Configuration Guide.

RADIUS accounting server configuration information, such as IP address, port (1813 is the standard port for accounting), and secret key, is specified using the `radius-profile` command.

Examples

The following command sets the server information in the profile `backup-acct` for the secondary RADIUS accounting server:

```
mc1000(config-essid)# accounting secondary-radius backup-acct
mc1000(config-essid)#
```
Related Commands

- accounting interim-interval
- radius-profile
- accounting primary-radius
ap-discovery join-ess

Configures whether access points automatically join an ESSID and are configured with its parameters.

Syntax

```
ap-discovery join-ess
no ap-discovery join-ess
```

Command Mode

ESSID configuration

Default

Enabled

Usage

By default, the `join-ess-on-discovery` command is enabled, which means that access points automatically join an ESSID and a BSS is automatically created. When a new access point is plugged into the WLAN, it goes through all the ESSIDs and joins all of them that have `ap-discovery join-ess` enabled. When creating an ESSID, access points join the new ESSID.

After you are satisfied with your WLAN configuration, you can disable `ap-discovery join-ess` so that new access points do not change your configuration. If you are adding a new ESS that you want to advertise on only a small subset of access points, it is easier to create the ESS with `ap-discovery join-ess` disabled and add the ESS-AP mappings manually.

Use the `no` form to prevent access points from automatically joining an ESSID. If the `no` form is used, a BSSID must be assigned manually.

Examples

The following command disables `ap-discovery join-ess`, which prevents access points from automatically joining an ESSID:

```
mc1000(config-essid)# no ap-discovery join-ess
mc1000(config-essid)#
```

Related Commands

- `ssid`
- `show essid`
ap-discovery join-virtual-ap

Enables access points on the same channel to share the same BSSID, forming a Virtual Cell.

Syntax

```plaintext
ap-discovery join-virtual-ap

no ap-discovery join-virtual-ap
```

Command Mode

ESSID configuration

Default

Enabled

Usage

By default, the `ap-discovery join-virtual-ap` command is enabled when creating an ESSID. This allows the formation of a Virtual Cell, which is a group of access points on the same channel sharing the same BSSID. If the `ap-discovery join-virtual-ap` command is disabled, access points on the same channel cannot share the same BSSID, which prevents the formation of a Virtual Cell. When the `ap-discovery join-virtual-ap` command is disabled, each access point has its own unique BSSID.

Caution! This status of this command is only evaluated when new ESS-AP mappings are created. ESS-AP mappings are either created manually with the `ess-ap` command, or automatically when a new ESS is created, or a new access point is discovered.

Note: This command should not be used for AP150/RS4000 deployments. It is recommended that if you have a mixed network of AP200s and either RS4000/AP150s, that you create 2 ESS Profiles. The ESS Profile for the AP200s can contain the command `ap-discovery join-virtual-ap` and the ESS Profile for RS4000/AP150 should have the command `no ap-discovery join-virtual-ap`.

Use the `no` form to disable access points on the same channel from sharing the same BSSID. Some examples of when you disable `ap-discovery join-virtual-ap`:

- You do not want to create a Virtual Cell. (In other words, each access point has its own BSSID.)
- You require access point recognition by BSSID.
- Deployments with AP150 or RS4000 models.

Examples

The following command disables `ap-discovery join-virtual-ap`, which prevents access points on the same channel to share the same BSSID:
mc1000(config-essid)# no ap-discovery join-virtual-ap
mc1000(config-essid)#

Related Commands
ess-ap
show essid
base-tx-rates

Sets base transmit rates (Mbps).

Syntax

```
base-tx-rates {802.11a rate | 802.11b rate | 802.11g rate | 802.11bg rate}
```

```
no base-tx-rates {802.11a rate | 802.11b rate | 802.11g rate | 802.11bg rate}
```

802.11a 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all
Enter the 802.11a protocol rate or all (which supports all rates) for the specified protocol.

802.11b 1 | 2 | 5.5 | 11 | all
Enter an 802.11b rate, or all (which supports all rates) for the specified protocol.

802.11bg 1 | 2 | 5.5 | 11 | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all
Enter an 802.11bg rate, or all (which supports all rates) for the specified protocol.

802.11g 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all
Enter an 802.11a rate, or all (which supports all rates) for the specified protocol.

Command Mode

ESS configuration

Default

Limitations

Not supported for the AP150 or RS4000 deployment; these configurations use a single default setting and ignore any settings configured with this command.

Usage

Setting the base rate specifies the mandatory rates that all connecting clients must support when connecting to the access point. Except when the all argument is used, each base rate change (either when adding or deleting) must be implemented with a separate command; that is, you cannot configure several rates using one command (for example, `base-tx-rate 802.11bg 1 2 11` is invalid).

Use the no form of the command to disable a specified base rate. Changing the base rate in an ESS profile will cause all clients on all ESSID to reassociate.

The supported data rates are the rates supported by the access points. The base data rates are a subset of the supported rates. The access point first tries to transmit at the highest data rate set to Basic. If there are problems encountered in the transmission, the access points steps down to the highest rate that allows data transmission.

Examples

The following command sets the 802.11bg base transmit rate to 11
default(config-essid)# **base-tx-rate 802.11bg 11**

The following command sets the 802.11a base transmit rate to support all rates (1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, and 54 Mbps):

```shell
default(config-essid)# **base-tx-rate 802.11a all**
```

Related Commands

- **supported-tx-rates**
beacon dtim-period

Sets the intervals at which beacons are sent.

Syntax

`beacon dtim-period period`

period Number of beacon intervals that elapse before broadcast frames stored in buffers are sent. Value must be between 0 and 255.

Command Mode

ESS configuration

Default

The default beacon DTIM period is 1.

Usage

Setting the DTIM period to a higher value decreases the frequency of broadcasts sent by the access point. If power-save mode is enabled on clients that are connected to access points, clients “wake up” less if fewer broadcasts are sent, which conserves battery life for the clients.

Because broadcasts are generally wasteful of air resources, the Meru Wireless LAN System replaces broadcasts with more efficient, limited unicasts. Therefore, only the behavior of clients currently in power-save mode is affected by the DTIM period value.

Examples

The following command changes the beacon DTIM period to 20:

```
default(config-essid)# beacon dtim-period 20
default(config-essid)#
```

Related Commands

- `essid`
- `show essid`
beacon period

Sets the rate at which beacons are transmitted.

Syntax

```
beacon period period
```

period Number of TUs (1 TU=1.024 ms) between beacons. Value must be between 20 and 65,520 TUs and a multiple of 20.

Command Mode

ESSID configuration

Default

The default beacon period is 100 TUs.

Usage

Setting the beacon period to a higher value decreases the frequency of unicasts and broadcasts sent by the access point. If power-save mode is enabled on clients that are connected to access points, clients “wake up” less if fewer unicasts and broadcasts are sent, which conserves battery life for the clients. The beacon period setting affects unicasts and broadcasts.

Examples

The following command changes the beacon period to 200 TUs:

```
mcl000(config-essid)# beacon period 200
mcl000(config-essid)#
```

Related Commands

```
show essid
```
calls-per-bss

Sets the maximum number of voice calls for this BSSID.

Syntax

```
calls-per-bss calls
```

calls
Sets the maximum number of voice calls for this BSSID. The allowable range of calls is from 0 to 1023. Setting *calls* to 0 allows the value for the global setting of *qosvars calls-per-bssid* to be used.

Command Mode

ESS-AP configuration

Default

Calls is set to 0.

Usage

This command is similar to the global QoS command, *qosvars calls-per-bssid*, but allows you to configure the maximum number of calls for this BSSID only. When both commands are used, the setting from this command takes precedence.

This command, with an argument other than the default (0), sets a threshold for the maximum number of calls for this BSS. This command implements the Call Admission Control (CAC) feature, which ensures a consistent level of voice quality by setting a threshold for the number of calls allowed. As the set threshold is reached, CAC denies new SIP connections until enough bandwidth is available to effectively handle the resulting media stream.

When the call limit for this BSS is exceeded, all new calls receive a 486_BusyHere response until the number of calls is under the specified threshold.

Examples

The following command sets the maximum number of calls for this BSSID to 14:

```
mc1000(config-essid-essap)# calls-per-bss 14
```

Related Commands

qosvars calls-per-bssid
ess-ap

Assigns an access point to an ESS and enters ESS-AP configuration mode.

Syntax

```
ess-ap {ap-id interface_index}
```

- **ap-id**
 - ID number of the AP to associate with the ESS.
- **interface_index**
 - The wireless interface index of the AP.

Command Mode

ESSID configuration

Default

None

Usage

Use this command to assign an access point to an ESS and enter ESS-AP configuration mode, where you can assign the BSSID for the channel for the access point.

Examples

The following configures AP-3, index 1:

```
mc1000(config-essid)# ess-ap 3 1
mc1000(config-essid-essap)#
```

Related Commands

- `show ess-ap`
essid

Creates an extended service set ID (ESSID).

Syntax

```
# essid essid
# no essid essid
```

`essid` String of up to 32 alphanumeric characters long.

Command Mode

Global configuration

Default

None

Usage

The ESSID is the name of a WLAN that clients see and connect to. By default, all access points that join the ESS and have the same channel form a Virtual Cell. The maximum number of ESSIDs you can create for the Meru Wireless LAN System is 64.

By default, any new ESSIDs are configured to use the security profile named `default`. To use another security profile, create it, and then assign it to the ESSID using the `security-profile` command in the ESSID configuration mode.

This value must be the same as the name assigned to the SSID name.

Use the `no` form to delete an ESSID.

Examples

The following command creates an ESSID named `sj_engineering`:

```
mc1000(config)# essid sj_engineering
mc1000(config-essid)#
```

Related Commands

- `show essid`
- `ssid`
I2bridge ipv6

Enables IPv6 address display.

Syntax

I2bridge ipv6
no I2bridge ipv6

Command Mode
ESSID configuration

Default
By default, IPv6 address display is disabled.

Usage
This command allows you to configure an ESSID to display IPv6 addressing.
Use the no form of the command to disable IPv6 addressing.
multicast-enable

Enables multicasting.

Syntax

```
multicast-enable
no multicast-enable
```

Command Mode

ESSID configuration

Default

Multicasting is disabled by default.

Usage

Use the `multicast-enable` command if you need to use a multicast application. Enabling multicasting causes all multicast packets on the air side to appear on the wired side and all multicast packets on the wired side to appear on the air side.

Use the `no` form to disable multicasting.

Caution! Multicasting is an advanced feature. Enabling multicasting in the WLAN can cause subtle changes in your network. Contact Meru Networks Customer Service before enabling multicasting.

Caution! Multicast is allowed only when the ESS has a one-to-one mapping with the default VLAN for this ESS. No other ESS can use the same VLAN.

Examples

The following command enables multicasting.

```
mc1000(config-essid)# multicast-enable
```

Related Commands

```
show essid
```
publish-essid

Enables broadcasting of an ESSID.

Syntax

- `publish-essid`
- `no publish-essid`

Command Mode

ESSID configuration

Default

An ESSID is broadcast by default.

Usage

When an ESSID is broadcast, it is included in the beacon that gets advertised. Clients using passive scanning listen for beacons transmitted by access points. If broadcasting an ESSID is disabled, clients listening for beacons cannot receive ESSID information.

Clients using active scanning send probe requests and wait for probe responses from access points. If broadcasting an ESSID is disabled, access points do not respond to probe requests, unless the probe request includes the ESSID.

Use the `no` form to prevent the ESSID from being broadcast.

Examples

The following disables the broadcasting of the ESSID:

```
mc1000(config)# essid eng
mc1000(config-essid)# no publish-essid
mc1000(config-essid)#
```

Related Commands

`essid`
remote-ap-enable

Enables the Remote AP feature.

Syntax

remote-ap-enable

no remote-ap-enable

Command Mode

ESSID configuration

Default

Remote AP is disabled by default.

Usage

Use the remote-ap-enable command to enable the Remote AP feature for this ESSID. The Remote AP feature allows APs to be installed and managed at locations separated from the controller by a WAN or ISP, such as at a satellite office or other type of remote location. The controller, through a configurable keep-alive signal, monitors the Remote APs.

Remote APs can exchange control information, including authentication and accounting information with the controller, but are unable to exchange data. The Remote APs can exchange data with other APs within their subnet. Because Remote APs cannot exchange data-plane traffic (including DHCP) with the controller, certain Meru Wireless LAN System features are not available for Remote AP configurations. These include Virtual Cell, VLAN, Captive Portal, L3 Mobility, QoS, and Security Profiles.

Use the dataplane-mode command in addition to this command to configure Remote AP.

Use the no form to disable Remote AP.

Examples

The following command enables Remote AP:

mcl000(config-essid)# remote-ap-enable

Related Commands

dataplane-mode
security-profile

Assigns a security profile, which defines security parameters, to the ESS.

Syntax

```
security-profile name
```

name Name of an existing security profile to be assigned to the ESS.

Command Mode

ESSID configuration

Default

The default security profile associated with an ESS is *default*.

Usage

Each ESS must be associated with a security profile. When you create an ESSID, it is automatically associated with a security profile named *default*. Use this command to assign a different security profile to an ESSID. Before assigning a security profile to an ESS, you must first create the security profile using the `security-profile` command in global configuration mode.

Examples

The following command assigns the security profile *nms-group* to the ESSID named *eng*:

```
mc1000(config)# essid eng
mc1000(config-essid)# security-profile nms-group
mc1000(config-essid)#
```

Related Commands

- `essid`
- `security-profile`
show ess-ap

Displays ESSIDs and their associated access points.

Syntax

```
show ess-ap [ap ap_id] bssid | channel | essid
```

Command Mode

Privileged EXEC and ESSID configuration modes

Default

None

Usage

The output for the `show ess-ap` command differs depending on the its arguments and the command mode from which the command is entered. In privileged EXEC mode, all ESSIDs and their associated access points are shown. In ESSID configuration mode, associated access points are shown for the ESSID being configured.

Examples

In privileged EXEC mode, the following command displays all ESSIDs and their associated access points (the list is a partial display):

```
mc1000# show ess-ap
ESS Profile                      AP ID AP Name         IfIndex Channel Max Calls BSSID
mwf--1xtls                       1     #1-2F-QA-208    2       161     0         00:0c:e6:69:4e:8c
mwf--1xtls                       1     #1-2F-QA-208    1       1       0         00:0c:e6:14:40:f7
mwf--1xtls                       2     #2-2F-Sw-208    2       161     0         00:0c:e6:69:4e:8c
mc1000#
```

Related Commands

`ess-ap`
show essid

Displays detailed ESSID information.

Syntax

```
show essid [essid]
```

`essid` Name of the ESSID for which you want to see detailed information.

Command Mode

Privileged EXEC

Default

By default, a list of all ESSIDs is shown.

Examples

The following command displays the configured ESSIDs:

```
mc1000# show essid
```

<table>
<thead>
<tr>
<th>ESS Profile Name</th>
<th>SSID</th>
<th>Remote AP</th>
<th>Security Profile</th>
<th>Broadcast</th>
<th>VLAN Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mwf-wpapeap</td>
<td>mwf-wpapeap</td>
<td>off</td>
<td>wpapeap</td>
<td>on</td>
<td>none</td>
</tr>
<tr>
<td>mwf-wpapsk</td>
<td>mwf-wpapsk</td>
<td>off</td>
<td>wpa-psk</td>
<td>on</td>
<td>none</td>
</tr>
<tr>
<td>mwf-guest</td>
<td>mwf-guest</td>
<td>off</td>
<td>cp-clear</td>
<td>off</td>
<td>configured-vlan-only</td>
</tr>
<tr>
<td>mwf-1xpeap</td>
<td>mwf-1xpeap</td>
<td>off</td>
<td>801xpeap</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf-voice</td>
<td>mwf-voice</td>
<td>off</td>
<td>default</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf-1xleap</td>
<td>mwf-1xleap</td>
<td>off</td>
<td>1x-leap_test1_test1</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf-wpaleap</td>
<td>mwf-wpaleap</td>
<td>off</td>
<td>WPA-leap_test1_test1</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf-wep128</td>
<td>mwf-wep128</td>
<td>off</td>
<td>WEP128_1-0-123</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf--1xtls</td>
<td>mwf--1xtls</td>
<td>off</td>
<td>mwf-eaptls</td>
<td>off</td>
<td>none</td>
</tr>
<tr>
<td>mwf-wpatls</td>
<td>mwf-wpatls</td>
<td>off</td>
<td>wpapeap</td>
<td>off</td>
<td>none</td>
</tr>
</tbody>
</table>

ESS Profile(10)

The following command displays information about the ESSID named `mwf-wpapeap`:

```
mc1000# show essid mwf-wpapeap
```

```
ESS Profile

ESS Profile Name : mwf-wpapeap
SSID : mwf-wpapeap
Remote AP : off
```
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Profile Name</td>
<td>wpapeap</td>
</tr>
<tr>
<td>Primary RADIUS Accounting Server</td>
<td></td>
</tr>
<tr>
<td>Secondary RADIUS Accounting Server</td>
<td></td>
</tr>
<tr>
<td>Accounting Interim Interval (seconds)</td>
<td>3600</td>
</tr>
<tr>
<td>Beacon Interval (msec)</td>
<td>300</td>
</tr>
<tr>
<td>SSID Broadcast</td>
<td>on</td>
</tr>
<tr>
<td>New AP's Join ESS</td>
<td>off</td>
</tr>
<tr>
<td>VLAN Support</td>
<td>none</td>
</tr>
<tr>
<td>VLAN Name</td>
<td></td>
</tr>
<tr>
<td>Allow Multicast Flag</td>
<td>off</td>
</tr>
<tr>
<td>New AP's Join Virtual AP</td>
<td>on</td>
</tr>
<tr>
<td>DTIM Period (number of beacons)</td>
<td>2</td>
</tr>
<tr>
<td>B Supported Transmit Rates (Mbps)</td>
<td>1, 2, 5.5, 11</td>
</tr>
<tr>
<td>B Base Transmit Rates (Mbps)</td>
<td>1, 2, 5.5, 11</td>
</tr>
<tr>
<td>A Supported Transmit Rates (Mbps)</td>
<td>6, 9, 12, 18, 24, 36, 48, 54</td>
</tr>
<tr>
<td>A Base Transmit Rates (Mbps)</td>
<td>6, 12, 24</td>
</tr>
<tr>
<td>G Supported Transmit Rates (Mbps)</td>
<td>6, 9, 12, 18, 24, 36, 48, 54</td>
</tr>
<tr>
<td>G Base Transmit Rates (Mbps)</td>
<td>6, 9, 12, 18, 24, 36, 48, 54</td>
</tr>
<tr>
<td>BG Supported Transmit Rates (Mbps)</td>
<td>1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54</td>
</tr>
<tr>
<td>BG Base Transmit Rates (Mbps)</td>
<td>1, 2, 5.5, 11</td>
</tr>
</tbody>
</table>

Related Commands: essid
ssid

Sets the SSID that is published over the air.

Syntax

```
ssid ssid
```

`ssid` Unique SSID.

Command Mode

ESS configuration

Default

None

Usage

Use this command to set the SSID that is published over the air.

Note: This value must be the same as the name assigned to the ESS profile name.

Examples

Related Commands

`essid` `show ess-ap`
silent-client-enable

Enables the silent client polling feature.

Syntax

silent-client-enable

no silent-client-enable

Command Mode

ESS configuration

Default

Disabled

Limitations

This command is only applicable when the ESS is configured for Virtual AP mode, and therefore is not supported on the AP150 or RS4000.

Usage

Use this command to enable silent client polling. Silent client polling is a feature used to overcome an inherent 802.11 performance weakness relating to how the phone clients behave after associating with AP is introduced in this release. Typically, phone clients are silent, that is, do not send data or 802.11 frames to an AP after associating and if a call is not in progress or while the phone is in power-save mode. If the person carrying the phone moves to a location serviced by another AP during the silent interval, the system may not know the new location of the silent client, and performance degradation and additional network activity is generated trying to determine the new location.

To alleviate this problem, silent client polling implements tracking information that is sent between the Controller and the APs and between the AP and the silent client to keep the system appraised of the silent client location.

Use the no silent-client-polling command to disable the feature.

Examples

Use the following command to enable silent client polling:

default(config-essid)# silent-client-polling
supported-tx-rates

Sets supported transmit rates (Mbps).

Syntax

```plaintext
supported-tx-rates {802.11a rate | 802.11b rate | 802.11g rate | 802.11bg rate}

no supported-tx-rates {802.11a rate | 802.11b rate | 802.11g rate | 802.11bg rate}
```

802.11a 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all
802.11b 1 | 2 | 5.5 | 11 | all
802.11bg 1 | 2 | 5.5 | 11 | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all
802.11g 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | all

Select the 802.11a protocol rate or all (which supports all rates) for the specified protocol.
Select an 802.11b rate, or all (which supports all rates) for the specified protocol.
Select an 802.11bg rate, or all (which supports all rates) for the specified protocol.
Select an 802.11a rate, or all (which supports all rates) for the specified protocol.

Command Mode

ESS configuration

Default

Not supported for the AP150 or RS4000 deployment; these configurations use a single default setting and ignore any settings configured with this command.

Usage

Setting the supported rate specifies the rates at which clients can optionally connect, provided the clients and the access points support the rate. Use the no form of the command to disable specified supported rates.

The supported data rates are the rates supported by the access points. The basic data rates are a subset of the supported rates. The access point first tries to transmit at the highest data rate set to Basic. If there are problems encountered in the transmission, the access points steps down to the highest rate that allows data transmission.

Examples

The following command sets the 802.11bg supported transmit rate to 11:

```plaintext
default(config-essid)# supported-tx-rate 802.11bg 11
```

The following command sets the 802.11a supported transmit rate to support all rates (6, 9, 12, 18, 24, 36, 48, and 54 Mbps):
default(config-essid)# supported-tx-rate 802.11a all

Related Commands

base-tx-rates
vlan name

Assigns a VLAN to an ESSID.

Syntax

- `vlan name name`
- `no vlan name`

Command Mode

ESSID configuration

Default

None

Usage

When creating an ESSID, you can assign a VLAN to the ESSID. This allows you to isolate an ESSID to a specific part of your network. By default, ESSIDs do not have VLANs assigned to them. You must create a VLAN using the `vlan` command in global configuration mode before assigning the VLAN to an ESSID.

Use the `no vlan name` command to disable the VLAN assignment.

Examples

The following command assigns the `engineering` VLAN to an ESSID:

```bash
mc1000(config-essid)# vlan name engineering
mc1000(config-essid)#
```

214 Meru Wireless LAN System Command Reference
vlan support

Determines how a VLAN is assigned to an ESSID.

Syntax

```plaintext
vlan support \{configured-vlan-only | radius-only | radius-and-configured-vlan | none\}
```

- **configured-vlan-only**: Specifies that the VLAN can only be associated to this ESSID by the controller.
- **radius-only**: Specifies that the VLAN can only be associated to this ESSID by the RADIUS server.
- **radius-and-configured-vlan**: Specifies that the VLAN can be associated to this ESSID by the RADIUS server and by configuration by the controller.
- **none**: Disables VLAN support for the ESSID (similar to using a `no` form of the command).

Command Mode

ESSID configuration

Default

None

Usage

When assigning a VLAN to the ESSID, this command determines how the VLAN is associated with the ESSID.

For RADIUS-assigned VLANs, the following attributes should be configured on the RADIUS server:

- **Tunnel-Type=VLAN**
- **Tunnel-Medium-Type=802**
- **Tunnel-Private-Group-ID=VLAN_ID**

If the RADIUS server has an entry for the tag field, the tag must be set to zero (0x00).

Captive Portal implementations do not support dynamic VLANs. When a Captive Portal is associated with an ESSID, define a VLAN and bind it to an ESSID with the `configured-vlan-only` option.

Use the parameter `none` to disable the VLAN association.

Examples

The following command determines that the RADIUS server assigns VLANs to the ESSID:

```plaintext
mc1000(config-essid)# vlan support radius-only
mc1000(config-essid)#
```
Related Commands

vlan name
Chapter 9
Access Point and Radio Commands

The commands contained in this chapter are used to configure and manage the connection between the controller and APs, as well as the AP radio settings. For many sites, default radio settings are adequate, but included are many commands that allow fine-tuning of the default radio settings for implementations with unique requirements.

- admin-mode
- antenna-property
- antenna-selection
- ap
- ap-redirect
- auto-ap-upgrade
- autochannel
- boot-script
- building
- channel
- connectivity
- contact
- controller domainname
- controller hostname
- controller ip
- dataplane-mode
- description
- fixed-channel
- floor
- high-density-enable
- hostname
- interface Dot11Radio
- ip address
- ip address dhcp
- ip default-gateway
- ip dns-server
- led
- link-probing-duration
- location
- mac-address
- mode
- model
- power local
- preamble-short
- protection-cts-mode
- protection-mode
- rf-mode
- show ap
- show ap-connectivity
- show ap-discovered
- show ap-redirect
- show ap-siblings
- show ap-swap
- show ess-ap
- show interfaces Dot11Radio
- show interfaces Dot11Radio antenna-property
- show interfaces Dot11Radio statistics
- show statistics top10-ap-problem
- show statistics top10-ap-talker
- show topoap
- show topoapap
- swap
admin-mode

Manages radio interfaces.

Syntax

```
admin-mode {Up | Down}
```

Command Mode

Dot11 Radio interface configuration

Default

The interface is Up by default.

Usage

This command allows control of whether an interface is enabled (Up) or disabled (Down). Setting the interface to Down makes the radio unavailable to client stations.

Throughput on dual-radio APs is slightly less than single radio APs due to the overhead of managing two radios. If the radio is not being used, it can be easily be temporarily disabled using this command to improve performance.

Examples

```
controller(config-if-802)# admin-mode Down
```

Related Commands
antenna-property

Manages external wireless antenna interface properties.

Syntax

```
antenna-property connector
```

`connector` Antenna connector ID; can be 1 (left antenna) or 2 (right antenna).

Command Mode

Dot11Radio interface configuration

Default

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command enters a subcommand mode that allows you to fine tune antenna properties such as gain and RF Band (2.4GHz, 5GHz or dual) and type (point-to-point or point-to-multipoint).

Examples

```
controller(config-if-802)# antenna-property 1
```

Related Commands

- `antenna-selection`
- `preamble-short`
- `show interfaces Dot11Radio antenna-property`
antenna-selection

Configures the access point to use the left or right antenna.

Syntax: `antenna-selection {left | right | diversity}`

- **left**: Configures the AP to use only the left antenna.
- **right**: Configures the AP to use only the right antenna.
- **diversity**: Configures an AP201 with 802.11b to use both antennas rather than just left or right. Using this feature allows the access point to receive from whichever antenna has the strongest signal.

 The antenna must be set to “left” before using this command.

 For proper functionality, the “short-preamble” feature must be off (default) to use the diversity mode.

Command Mode: Dot11Radio interface configuration

Default: The default is for the system to use the left antenna of an AP.

Limitations: This command is not supported on the AP150 or RS4000.

Usage: This command configures all access point models to use either the right or the left antenna. For the AP201 connected via 802.11b, diversity mode can be configured, which chooses the antenna receiving the stronger signal from the either the right or the left antenna.

Examples:

```
mc1000(config-if_802)# antenna-selection right
mc1000(config-if_802)#
```

Related Commands: `antenna-property`
ap

Enters access point configuration.

Syntax

```
 ap id
 no ap id
```

`id`
The unique identifier for the access point.

Command Mode
Global configuration

Default
None

Usage
Use the `ap` command with an identifying number to enter the AP configuration submode to configure that particular access point. Use the `no ap id` command to remove a Controller-to-AP assignment.

Examples

```
mc1000(config)# ap 1
mc1000(config-ap)# ?
```

- `boot-script`
 Configure boot script for this AP.
- `building`
 Building location for this AP.
- `connectivity`
 Manage AP connectivity.
- `contact`
 Contact person for this AP.
- `dataplane-mode`
 Determine whether the data packets go through the controller or not.
- `default`
 Reset to default values
- `description`
 Description of AP.
- `do`
 Executes an IOSCLI command.
- `end`
 Save changes, and return to privileged EXEC mode.
- `exit`
 Save changes, and return to global configuration mode.
- `floor`
 Floor location for this AP.
- `high-density-enable`
 Enable high density.
- `led`
 Configure LED settings.
- `link-probing-duration`
 Duration AP waits before rebooting when controller link is down.
- `location`
 Location of this AP.
- `mac-address`
 Assign a new MAC address or pre-provision AP.
- `model`
 Assign AP HW type.
- `no`
 Disables various parameters.
show AP

Displays various parameters related to this AP.

Related Commands

- boot-script
- building
- contact
- connectivity
- dataplane-mode
- description
- floor
- high-density-enable
- led
- link-probing-duration
- location
- mac-address
ap-redirect

Redirects APs to another controller.

Syntax

```
ap-redirect {ip-subnet ip_addr subnet_addr | mac-address mac_addr} controller_ip_addr
no ap-redirect
```

Command Mode

Global configuration

Default

None

Usage

This command allows you to specify APs (by MAC address or by IP subnet address) that are to be redirected to another controller (specified by its hostname or IP address). Redirection takes place after initial discovery. Each controller can have a redirect table that associates the AP's MAC/IP subnet address to an IP address or hostname of a controller. A maximum of 5 hops (redirects) are allowed per AP.

Use the `no` form of the command to remove a redirection assignment.

Examples

```
mc1000(config-ap)# ap-redirect mac-address 00:0c:e6:00:01:02
   172.10.10.5
mc1000(config-ap)#
```

Related Commands

`show ap-redirect`
auto-ap-upgrade

Allows AP firmware to be automatically upgraded by the controller.

Syntax

```
auto-ap-upgrade {enable | disable}
```

enable Activates the AP automatic upgrade feature. This is the default setting.

disable Deactivates the AP automatic upgrade feature.

Command Mode

Global configuration

Default

The AP automatic upgrade feature is enabled by default.

Usage

This command allows the firmware on an AP to be automatically upgraded by the controller when an AP joins the WLAN. An AP cannot be monitored (and consequently, be part of the WLAN) if its firmware is at a different level than that of the controller.

When an AP initiates its discovery phase, the controller checks the firmware version and performs an upgrade if the version is not at the same level as that of the controller. This feature simplifies the process of adding a group of APs to an existing WLAN.

When this feature is enabled, you can check the upgrade status of affected APs through syslog messages and SNMP traps that warn of an AP/controller software version mismatch. An alarm is dispatched to an SNMP manager if a mismatch exists, meaning the AP is unable to upgrade for some reason. Once the upgrade is performed, syslog and SNMP traps are sent notifying of the AP/controller software version match. Alarms must be cleared manually.

This feature does not interfere with a normal WLAN system upgrade when the `upgrade` command is used.

Examples

```
mc1000(config)# auto-ap-upgrade enable

mc1000# show controller
Global Controller Parameters

Controller ID : 1
Description    : meru-wifi
Host Name      : meru-wifi
Uptime         :
  00d:02h:15m:36s
```
Location : 2nd Floor
 Switch room
Contact : Sam Am
Operational State : Enabled
Availability Status : Online
Alarm State : No Alarm
Automatic AP Upgrade : off
Virtual IP Address : 192.168.10.2
Virtual Netmask : 255.255.255.0
Default Gateway : 192.168.10.1
DHCP Server : 10.0.0.10
Statistics Polling Period (seconds)/0 disable Polling : 300
Audit Polling Period (seconds)/0 disable Polling : 300
Software Version : 3.2-116
Network Device Id : 00:90:0b:06:15:28
System Id : A255B41E53F3
Default AP Init Script :
DHCP Relay Passthrough : off
Controller Model : MC3000
Country Setting : United States Of America

Manufacturing Serial # : N/A
Management by wireless stations : on
autochannel

Performs automatic channel configuration.

Syntax

```
autochannel channel_list
```

`channel_list` A list of 802.11bg and/or 802.11a channels separated by white space. An appropriate channel for the type of wireless interface will automatically be applied.

Command Mode Global configuration

Default None

Limitations This command is not supported on the AP150 or RS4000.

Usage This command automatically assigns channels to APs.

When `autochannel` runs, it checks that the channels specified as arguments are valid for the AP’s configured country code. If a channel is invalid, it displays an error message specifying the valid list of channels. The optimum channel is then selected and set for the specific AP interface (based on the RF band that is configured for that interface, b/g or a). The process takes approximately 2 minutes, during which time the APs are not operational.

To exclude an interface from an autochannel assignment, use the `channel` and `fixed-channel` commands.

Examples

```
mcl000(config)# autochannel 2 3 4
Pre-initialization:
  out of 44 APs, 3 are enabled
```

Related Commands

- `channel`
- `fixed-channel`
boot-script

Runs a specified script when an access point boots.

Syntax

```
boot-script script
no boot-script
```

script Name of the script to run.

Command Mode

Global configuration

Default

None

Usage

Use this command to boot the access point with a specific script. You can see a list of available scripts with the `show ap scripts` command from the `privileged exec` command mode.

Use the `no` form of the command to disable the default AP boot script.

Examples

```
mc1000# show scripts
default
debug
cli
mc1000# configure terminal
mc1000(config)# boot-script default
mc1000(config)
```

Related Commands

`boot-script`
building

Specifies the building in which an access point is located.

Syntax

```
building building-name
```

buidling-name Name of the building in which the access point is located. The building name can be up to 64 alphanumeric characters long. To use spaces in the name, enclose the name in double quotation marks (" ").

Command Mode

Access point configuration

Default

None

Usage

Using the `building` command is optional and is only used for informational purposes.

Examples

The following commands specify that an access point with a node ID of 2 is located in building 1:

```text
controller# ap 2
controller(config-ap)# building "building 1"
controller(config-ap)# exit
```

Related Commands

- `floor`
- `location`
Sets the channel number for the wireless interface to use.

Syntax

```
channel channel
```

channel Channel ID

Command Mode

Dot11Radio interface configuration

Default

None

Usage

Sets the wireless interface channel. Typing `channel ?` lists the available channels for the type of radio in use.

To ensure the channel set is not changed if the `autochannel` command is run, use the `fixed-channel` command.

Examples

```
mc1000(config-if_802)# channel ?
<channel> Enter the channel ID.
1
10
11
149
153
157
161
165
2
3
36
4
40
44
48
5
52
56
6
60
64
7
8
```
mc1000(config-if_802)# channel 149

Related Commands

- autochannel
- fixed-channel
connectivity

Manages AP connectivity and puts you into AP connectivity mode if using **l2-preferred** or **l3-preferred**.

Syntax

```
connectivity { l2-only | l2-preferred | l3-preferred }
```

- **l2-only**

 Uses Layer 2 only for AP discovery.

- **l2-preferred**

 Uses Layer 2 as first attempt for AP discovery. If a controller is not found within 16 seconds, it then attempts Layer 3 discovery.

- **l3-preferred**

 Uses Layer 3 as first attempt for AP discovery. If a controller is not found within 16 seconds, it then attempts Layer 2 discovery.

Command Mode

AP configuration

Default

The default connectivity is Layer 2 preferred.

Usage

This command is used to manage the connectivity of an AP to a controller. The AP and controller can be in the same subnet or they can be in different subnets, separated by one or more routers.

When an AP joins a WLAN, it searches for a controller to link to. By default, the AP uses Layer 2 MAC address broadcast discovery packets to allow it to be found by a controller. When the controller and AP are in the same subnet, the AP is discovered by the controller and configuration information is downloaded from the controller to the AP.

As the Layer 2 protocol does not allow the discovery packets outside of the subnet, if the controller is not in the same subnet as the AP, Layer 3 routing must be established. The default connectivity switches to Layer 3 discovery if a controller is not found within 16 seconds.

If the configuration uses a router between subnets, and the AP is in a different subnet than the controller, use the **l3-preferred** option to initiate Layer 3 connectivity to the controller. In this configuration, if a DNS server is set up to contain the default name of the controller, “wlan-controller,” with the controller IP address “default,” a connection between the AP and controller can automatically be established and the AP can receive its configuration information from the controller.

Choose **l2-preferred** or **l3-preferred** to enter into **ap-connectivity** mode. In this mode, a controller IP address, hostname, and domain name can be explicitly configured.
Examples

The following commands can be used to setup a Layer 3 configuration for an AP not in the same subnet as the controller. The first command enters connectivity mode, then configures the AP to obtain its IP address from DHCP (which then allows the AP to connect the DNS server and query for the IP address for the hostname “wlan-controller”):

```
mc1000(config-ap)# connectivity l3-preferred
mc1000(config-ap-connectivity)# ip address dhcp
mc1000(config-ap-connectivity)# controller hostname wlan-controller
```

Related Commands

- controller domainname
- controller hostname
- controller ip
- ip address dhcp
- ip dns-server
- show ap-connectivity
contact

Provides the contact person for the access point.

Syntax

```
contact contact
```

- `contact`: Contact name

Command Mode

AP configuration

Default

None

Usage

This command sets the contact person for the access point.

Examples

```
mc1000(config-ap)# contact Bob
mc1000(config-ap)#
```

Related Commands

`location`
controller domainname

Configures the controller domain name from where the access point is discovered.

Syntax
controller domainname

Command Mode
AP connectivity configuration

Default
None

Usage
Configures the controller’s domain name.

Examples
mc1000(config-ap-connectivity)# controller domainname acme
mc1000(config-ap-connectivity)#

Related Commands
controller hostname
controller ip
controller hostname

Configures the controller hostname from where the access point is discovered.

Syntax

```
controller hostname hostname
```

Command Mode

AP connectivity configuration

Default

None

Usage

Configures the controller’s IP hostname.

Examples

```
mc1000(config-ap-connectivity)# controller hostname acmeCorp
mc1000(config-ap-connectivity)#
```

Related Commands

```
controller domainname
controller ip
```
controller ip

Configures the controller IP from where the access point is discovered.

Syntax

```plaintext
controller ip address
```

address Sets the controller IP address

Command Mode

AP connectivity configuration

Default

None

Usage

Configures the controller’s IP address.

Examples

```plaintext
mc1000(config-ap-connectivity)# controller ip address 10.0.220.30
mc1000(config-ap)#
```

Related Commands

- `controller domainname`
- `controller hostname`
dataplane-mode

Determines whether Remote AP is active.

Syntax

`dataplane-mode {bridged | tunneled}`

- **bridged**: Specifies the data packets are not passed to the controller; only control plane packets are passed to the controller (Remote AP mode).
- **tunneled**: Specifies the default behavior for APs where data and control packets are passed to the controller.

Command Mode

AP configuration

Default

The default dataplane mode is for tunneled traffic.

Usage

This command is used to determine what type of traffic is passed between the controller and an AP. It is used the configure the Remote AP feature (bridged mode) for the Controller and AP connection.

The Remote AP feature allows APs to be installed and managed at locations separated from the controller by a WAN or ISP, such as at a satellite office or other type of remote location. The controller, through a configurable keep-alive signal, monitors the Remote APs. Remote APs can exchange control information, including authentication and accounting information with the controller, but are unable to exchange data. The Remote APs can exchange data with other APs within their subnet. Because Remote APs cannot exchange data-plane traffic (including DHCP) with the controller, certain Meru Wireless LAN System features are not available for Remote AP configurations. These include Virtual Cell, VLAN, Captive Portal, L3 Mobility, and QoS. Use the `remote-ap-enable` command in addition to this command to configure Remote AP.

By default, a Controller and an AP are connected with a data tunnel so that data from a mobile station is tunneled to the controller from the AP and vise versa.

If the **bridged** option is used, the APs can be deployed in a remote location, separated from the controller by one or more routers and considered a Layer 3 Remote AP deployment. When the AP is in bridged mode, QoS rules and classification is not provided since that is performed only when the packets are tunneled through the Controller.

Examples

```
mcl000(config-ap)# dataplane-mode tunneled
mcl000(config-ap)#
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>remote-ap-enable</td>
</tr>
</tbody>
</table>
description

A text description for the access point.

Syntax

```
description description
```

description Description of the access point. Descriptions longer than 64 characters may impact readability on the Web interface page.

Command Mode

AP configuration

Default

None

Usage

Describes the access point in text.

Examples

```
mcl000(config-ap)# description servesQA+IT
mcl000(config-ap)#
```

Related Commands

building
floor
location
fixed-channel

Fixes the RF channel so it cannot be changed by autochannel configuration.

Syntax

-fixed-channel enable
-no fixed-channel

-enable Enables fixed-channel mode.

Command Mode

Dot11Radio interface configuration

Default

No fixed-channel

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command is used to prevent the autochannel assignment performed with the **autochannel** command. Use the **enable** keyword to activate fixed-channel functionality. Use the **channel** command to set the channel, prior to fixing the channel, with this command.

Use the **no fixed-channel** command to return to autochannel mode.

Examples

```bash  
mc1000(config-if_802)# fixed-channel enable  
mc1000(config-if_802)#
```

Related Commands

- **autochannel**
- **channel**
floor

Specifies the floor on which an access point is located.

Syntax

```
floor floor-name
```

floor-name
Name of the floor on which the access point is located. The floor name can be up to 64 alphanumeric characters long. To use spaces in the name, enclose the name in double quotation marks (" ").

Command Mode
Privileged EXEC

Default
None

Usage
Using the `floor` command is optional and is only used for informational purposes.

Examples
The following commands specify that an access point with the node ID of 2 is located on the second floor:

```
controller# ap 2
controller(config-ap)# floor "second floor"
controller(config-ap)#
```

Related Commands
`building`
`location`
high-density-enable

Enables filtering of multiple access points, reducing overall “noise” during communications.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>high-density-enable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no high-density-enable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>AP configuration</th>
</tr>
</thead>
</table>

| Default | By default, high-density enable is off. |

| Limitations | This command is not supported on the AP150 or RS4000. |

| Usage | High-density enable reduces extraneous noise during communications when many access points are communicating at once. Use the no form to return to the default. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>mc1000(config-ap)# high-density-enable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc1000(config-ap)#</td>
</tr>
</tbody>
</table>
hostname

Sets the access point hostname.

Syntax

```
hostname hostname
```

hostname

Hostname from 1-37 characters.

Command Mode

AP connectivity configuration

Default

None

Usage

Sets the access point hostname.

Examples

```
mc1000(config-ap)# hostname acme
mc1000(config-ap)#
```
interface Dot11Radio

Selects AP radio interface for configuration and enters 802.11 configuration mode.

Syntax

```
interface Dot11Radio node-id interface_ID
```

- **node-id**: Selects the access point to configure
- **interface_ID**: Specifies the first or the second radio interface, if two radios are present on the AP. *interface_ID* can be 1 or 2.

Command Mode

Global configuration

Default

None

Usage

Puts you in Dot11Radio mode for configuring individual access point interfaces.

Examples

```
mc1000(config)# interface Dot11Radio 1 1
mc1000(config-if-802)# ?
admin-mode Administrative Mode.
antenna-property Manage external wireless interface antennas.
antenna-selection Antenna configuration.
channel Configure the channel ID.
default Set various parameters to the default value.
do Executes an IOSCLI command.
end Save changes, and return to privileged EXEC mode.
exit Save changes, and return to global configuration mode.
fixed-channel configuration.
interop-mode B/G protection mechanism.
mode AP mode configuration.
no Disables various parameters.
power Transmit power in the format low,medium,high. For example, 20,20,20.
preamble-short Enables short preamble.
protection-mode bg protection mode.
rf-mode Configure the Radio Frequency mode (802.11a, b, g, or bg).
scanning-channels Configure the channels for scanning.
show interface Displays various parameters related to this wireless
show tuning Tune wireless interface.
```
Related Commands

- antenna-property
- antenna-selection
- channel
- fixed-channel
- protection-cts-mode
- power local
- preamble-short
led

Specifies the blinking pattern of the LED Mode light.

Syntax

```
led {blink | NodeId | Normal}
```

- **blink**: LED Mode blinks two short blinks followed by four short blinks.
- **NodeId**: The LED Mode light blinks short green blinks indicating the last digit of the AP ID. The number of short green lights is equal to the number of the AP ID modulo 10. Therefore, for AP IDs 4, 14, and 24, the NodeID mode blinks with a long yellow light followed by 4 short green lights. For AP IDs 7, 17, and 27, the NodeID mode blinks with a long yellow light followed by 7 green lights. Using this mode helps you identify the AP from other APs in the system.
- **Normal**: The LED blink pattern is controlled by the AP.

Command Mode

AP configuration

Default

The default is **blink** (blinking).

Limitations

This command is not supported on the AP150 or RS4000.

Usage

Use this command to specify the blinking pattern of the LED Mode light. When there is no activity in either case, the LED is off/not illuminated.

Examples

The following command changes the blinking pattern to **Normal**:

```
mc1000(config-ap)# led normal
```
link-probing-duration

Specifies the duration an AP waits before rebooting when controller link is broken.

Syntax

```
link-probing-duration duration
```

duration Specifies the AP wait duration in minutes. *duration* can be from 1 to 3200.

Command Mode

AP configuration

Default

None

Usage

Specifies the duration an AP waits before rebooting when the controller link is broken. This command is used in Remote AP configurations to prevent AP reboots when the connectivity to the remote controller is lost.

Examples

```
mcl000(config-ap)# link-probing-duration 3200
```
location

The location of the access point.

Syntax

```
location location
```

location Location of the access point.

Command Mode

AP configuration

Default

None

Usage

Describes the location of the access point.

Examples

```
mcl000(config-ap)# location 10ft_from_west_window
```

Related Commands

- contact
- description
mac-address

The MAC address of the access point.

Syntax

```
mac-address mac-address
```

mac-address
MAC address of the access point in hexadecimal format.

Command Mode
AP configuration

Default
None

Usage
Configures the MAC address for the access point.

Examples

```
mcl000(config-ap)# mac-address 00:E5:F0:B8:2A:3F
mcl000(config-ap)#
```

Related Commands
ap
mode

Configures the AP radio mode to monitor-only or provide normal wireless service.

Syntax

```plaintext
mode {normal | scanning}
```

- **normal** Sets the AP radio to provide normal wireless services.
- **scanning** Sets the AP radio to provide only continuous monitoring service.

Command Mode

Dot11Radio interface configuration

Default

Usage

Configures the specified access point’s radio to provide the specified service type. For the AP200 with two radios installed, allows you to configure the functionality mode of each radio.

Examples

```plaintext
mc1000(config-if_802)# mode scanning
mc1000(config-if_802)#
```
model

Configures the AP model type.

Syntax

model {type}

type

Sets the AP model type. type can be:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AP201</td>
<td>AP201</td>
</tr>
<tr>
<td>AP208</td>
<td>AP208</td>
</tr>
</tbody>
</table>

Command Mode

AP configuration

Default

Usage

Configures the specified Access Point hardware model type.

Examples

```
mc1000(config-ap)# model AP208
mc1000(config-ap)#
```
power local

Configures the transmit power.

Syntax

```
power local power-level
```

power-level The transmit power level in dBms. *power-level* can be set between 5 and 21.

Command Mode

Dot11Radio interface configuration

Default

20,20,20

Usage

Configures the low, medium and high transmit power settings. The power settings are used to manage contention between neighboring AccessPoints.

Note: At this time, all three levels should reflect the same value.

Examples

```shell
mc1000(config-if_802)# power local power-level 21,21,21
mc1000(config-if_802)#
```
preamble-short

Indicates whether short preamble is used.

Syntax

- preamble-short
- no preamble-short

Command Mode

Dot11Radio interface configuration

Default

The short preamble is set by default.

Usage

Use this command to set a preamble. Use the no feature to disable short and use a long preamble. This feature is either on or off.

Examples

mcl1000(config-if_802)# preamble-short
mcl1000(config-if_802)#
protection-cts-mode

Configures the radio interoperability mode.

Syntax

```
protection-cts-mode {wmm-txop | 802.11-1999}
```

- **wmm-txop**
 WMM-style TXOP protection for 802.11g frames. Improves performance of 802.11g clients above typical throughput in a mixed 802.11b/802.11g environment.

- **802.11-1999**
 One frame protection for 802.11g frames. Provides standard 802.11 mixed 802.11b/802.11g performance.

Command Mode

Dot11Radio interface configuration

Default

The default mode is **802.11-1999**.

Limitations

Only the 802.11-1999 mode is supported on the AP150 or RS4000.

Usage

Configures the access point’s interoperability mode. The **wmm-txop** option uses the WMM TXOP feature in an intelligent manner for data to provide performance gains.

Examples

```
mc1000(config-if_802)# protection-cts-mode wmm-txop
```
protection-mode

Manages bg protection mode settings.

Syntax

```
protection-mode {auto | off | on}
```

```
no protection-mode
```

Command Mode

Dot11Radio interface configuration

Default

The protection mode `auto` setting is enabled.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

Use this command to set the bg mixed-mode protection mechanism mode for the radio interface to `on`, `off`, or `auto`. If `auto` is selected, 802.11bg Dual-Speed protection mechanism is enabled for the type of radio in use. For 802.11bg radios, optimal performance for 802.11g clients is achieved if 802.11b clients are present and the protection mode is enabled (on or auto). This option has no impact for 802.11b only or 802.11a radios.

Examples

To disable the automatic protection mode settings:

```
mc1000(config-if_802)# protection-mode off
```

To enable the protection mode settings:

```
mc1000(config-if_802)# protection-mode on
```

To set the protection mode settings back to automatic:

```
mc1000(config-if_802)# protection-mode auto
```
Related Commands

rf-mode
rf-mode

Configures the radio frequency mode.

Syntax

rf-mode mode

mode

Specifies the radio frequency. mode can be:

- **802.11a**—Specifies the 802.11a standard.
- **802.11b**—Specifies the 802.11b standard.
- **802.11bg**—Specifies the 802.11b/g interop mode.
- **802.11g**—Specifies the 802.11g standard.

Command Mode

Dot11Radio interface configuration

Default

Usage

Configures the access point’s radio frequency mode. This command allows you to choose the radio band. When the 802.11bg mode is selected, you can also configure the Meru Wireless LAN System proprietary protection mode, that improves performance for g clients in a bg mixed environment.

Examples

On an AP 201, choose to implement the 802.11bg mixed mode with the command:

```
mc1000(config-if_802)# rf-mode 802.11bg
mc1000(config-if_802)#
```

Related Commands

- protection-mode
show ap

Displays information about the access point

Syntax

`show ap [node-id]`

node-id Optional. The identification number of the access point

Command Mode

EXEC

Default

None

Usage

Displays access point information, including AP ID and name, MAC address, operational state, availability status, runtime image version, connectivity layer, model type, and remote/local placement. Enter an optional ID to see detailed information about one access point. Do not enter any ID to see high-level information about all access points currently on the system.

Use the operational state and availability status to assess the state of the access point. The most common combinations and their meaning are:

- Enabled and On-line: Access point is operating correctly.
- Disabled and Off-line: Controller cannot communicate with the access point.
- Disabled and On-line: Access point or network is not configured correctly.

The availability status is used to monitor if a piece of equipment has been pre-provisioned, discovered, or simply powered off. All possible values for this state are included in the following table:

<table>
<thead>
<tr>
<th>Availability Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Installed</td>
<td>The network element has been pre-provisioned, but not yet discovered</td>
</tr>
<tr>
<td>PowerOff</td>
<td>The network element is installed (has been discovered at least once), but it is not currently powered on.</td>
</tr>
<tr>
<td>Off-line</td>
<td>The network element is powered-on, but it has been placed off-line by an administrative action.</td>
</tr>
<tr>
<td>On-line</td>
<td>The network element is working properly.</td>
</tr>
</tbody>
</table>
Example1

mc1000# show ap

<table>
<thead>
<tr>
<th>AP ID</th>
<th>AP Name</th>
<th>Serial Number</th>
<th>Op State</th>
<th>Availability</th>
<th>Runtime</th>
<th>Connectivity</th>
<th>AP Model</th>
<th>AP Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#1-2F-QA-20</td>
<td>00:0c:e6:00:2f:24</td>
<td>Disabled</td>
<td>Offline</td>
<td>3.2-116</td>
<td>None</td>
<td>AP208</td>
<td>Local</td>
</tr>
<tr>
<td>2</td>
<td>#2-2F-Sw-20</td>
<td>00:0c:e6:00:30:98</td>
<td>Enabled</td>
<td>Online</td>
<td>3.2-116</td>
<td>L3</td>
<td>AP208</td>
<td>Local</td>
</tr>
<tr>
<td>3</td>
<td>#3-2F-Exec-</td>
<td>00:0c:e6:00:17:94</td>
<td>Enabled</td>
<td>Online</td>
<td>3.2-116</td>
<td>L2</td>
<td>AP201</td>
<td>Local</td>
</tr>
<tr>
<td>4</td>
<td>#4-2F-HW-20</td>
<td>00:0c:e6:00:2f:3a</td>
<td>Disabled</td>
<td>Offline</td>
<td>None</td>
<td>None</td>
<td>AP208</td>
<td>Local</td>
</tr>
<tr>
<td>5</td>
<td>#5-1F-Front</td>
<td>00:0c:e6:00:2e:c4</td>
<td>Disabled</td>
<td>Offline</td>
<td>None</td>
<td>None</td>
<td>AP208</td>
<td>Local</td>
</tr>
</tbody>
</table>

meru-wifi# show ap 1

AP Table

<table>
<thead>
<tr>
<th>AP ID</th>
<th>: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Name</td>
<td>: #1-2F-QA-208</td>
</tr>
<tr>
<td>Serial Number</td>
<td>: 00:0c:e6:00:2f:24</td>
</tr>
<tr>
<td>Uptime</td>
<td>: 00d:00h:00m:00s</td>
</tr>
<tr>
<td>Location</td>
<td>: Sunnyvale</td>
</tr>
<tr>
<td>Building</td>
<td>: HQ</td>
</tr>
<tr>
<td>Floor</td>
<td>: 2nd floor</td>
</tr>
<tr>
<td>Contact</td>
<td>: Sam</td>
</tr>
<tr>
<td>Operational State</td>
<td>: Disabled</td>
</tr>
<tr>
<td>Availability Status</td>
<td>: Offline</td>
</tr>
<tr>
<td>Alarm State</td>
<td>: Critical</td>
</tr>
<tr>
<td>Enable High Density</td>
<td>: off</td>
</tr>
<tr>
<td>LED Mode</td>
<td>: Normal</td>
</tr>
<tr>
<td>AP Init Script</td>
<td>:</td>
</tr>
<tr>
<td>Boot Image Version</td>
<td>: 3.09.000</td>
</tr>
<tr>
<td>FPGA Version</td>
<td>: 8.38.3</td>
</tr>
<tr>
<td>Runtime Image Version</td>
<td>: 3.2-116</td>
</tr>
<tr>
<td>Connectivity Layer</td>
<td>: None</td>
</tr>
<tr>
<td>Dataplane Mode</td>
<td>: tunneled</td>
</tr>
<tr>
<td>Link Probing Duration</td>
<td>: 120</td>
</tr>
<tr>
<td>AP Model</td>
<td>: AP208</td>
</tr>
<tr>
<td>AP Type</td>
<td>: Local</td>
</tr>
</tbody>
</table>

Availability Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>The network element is installed and powered on, but is not functioning correctly.</td>
</tr>
<tr>
<td>In-test</td>
<td>The network element is not currently in service due to an administrative action to place it in test.</td>
</tr>
</tbody>
</table>
show ap-connectivity

Displays the access point connections.

Syntax

show ap-connectivity

Command Mode

EXEC

Default

None

Usage

Displays access point connectivity information, including the type of configuration, the discovery protocol used, the connectivity layer, and the IP address.

Examples

The following command displays access point connectivity information for all APs:

default# show ap-connectivity

<table>
<thead>
<tr>
<th>AP ID</th>
<th>AP Name</th>
<th>IP Configuration</th>
<th>Discovery Protocol</th>
<th>Connectivity IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#1-2F-QA-208</td>
<td>Static</td>
<td>L3-preferred</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>CustSup</td>
<td>Static</td>
<td>L3-preferred</td>
<td>192.168.9.11</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>Static</td>
<td>L3-preferred</td>
<td>192.168.9.14</td>
</tr>
<tr>
<td>26</td>
<td>AP-26</td>
<td>DHCP</td>
<td>L2-preferred</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>28</td>
<td>AP-28</td>
<td>Static</td>
<td>L3-preferred</td>
<td>192.168.1.71</td>
</tr>
<tr>
<td>29</td>
<td>AP-29</td>
<td>Static</td>
<td>L2-preferred</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

The following command displays detailed connectivity information for AP 1:

default# show ap-connectivity 1

AP Network Connectivity configuration

AP ID : 1
AP Name : #1-2F-QA-208
IP Configuration: Static
Static IP Address: 192.168.10.21
Static IP Netmask: 255.255.255.0
Static Default Gateway: 192.168.10.1
Primary DNS Server: 10.0.0.10
Secondary DNS Server: 10.0.0.40
AP Host Name : Ap4-2F-QA
Discovery Protocol: L3-preferred
Controller Address: 192.168.10.2
Controller Host Name: :
Controller Domain Name :
Connectivity Layer : None
Domain Name : localdomain
IP Address : 0.0.0.0
NetMask : 0.0.0.0
Gateway : 0.0.0.0
DNS Server 1 : 0.0.0.0
DNS Server 2 : 0.0.0.0
DNS Server 3 : 0.0.0.0
DNS Server 4 : 0.0.0.0
DNS Server 5 : 0.0.0.0
DNS Server 6 : 0.0.0.0
DNS Server 7 : 0.0.0.0
DNS Server 8 : 0.0.0.0

Related Commands

- show ap
- show ap-discovered
- show ap-siblings
show ap-discovered

Displays the list of discovered access points and stations.

Syntax

`show ap-discovered [MAC_address]`

MAC_address Optional. Display specific information for this MAC address (station or AP).

Command Mode

EXEC

Default

None

Usage

Displays the access points and stations discovered by the system.

Examples

```
mc1000# show ap-discovered

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Type</th>
<th>Channel</th>
<th>SSID</th>
<th>Pkts Rx</th>
<th>RF Band</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
<tr>
<td>16</td>
<td>00:02:2d:66:e1:b0</td>
<td>STATION</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>CustSup</td>
</tr>
</tbody>
</table>
```
Related Commands

- show ap
- show ap-connectivity
- show ap-siblings
show ap-redirect

Displays the assignment of APs to controller configuration.

Syntax

```
show ap-redirect {ip-subnet [ip_subnet]} mac-address [mac_addr] 
```

- **ip-subnet [ip_subnet]** Shows all or the specified IP subnet address of redirected.
- **mac-address [mac_addr]** Shows all or the specified MAC address to be redirected.

Command Mode

Privileged EXEC

Default

None

Usage

Displays the access points redirection tables.

Examples

The following example show how to view the AP redirect table of MAC addresses:

```
meru-wifi# show ap-redirect mac-address
```

<table>
<thead>
<tr>
<th>AP MAC</th>
<th>Destination Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0c:e6:00:01:02</td>
<td>172.10.10.5</td>
</tr>
</tbody>
</table>

Assignments of APs to controllers(1 entry)

Related Commands

- `ap-redirect`
show ap-siblings

Displays the access point siblings table.

Syntax

```
show ap-siblings [MAC_address]
```

- `MAC_address`: Optional. Display specific information for this MAC address.

Command Mode

EXEC

Default

None

Usage

Displays access point sibling information including serial numbers, SSID, time, and usage parameters.

Examples

```
mc1000# show ap-siblings
AP ID  Serial Number     Channel   Confirmed-Channel SSID     
Last    Previous  Current     
2       00:0c:e6:00:17:94 1       1       mwf-voice
     00d:00h:00m:00s  174  174  #2-2F-Sw-208
2       00:0c:e6:00:2f:6c 161  161
     00d:00h:00m:00s  179  179  #2-2F-Sw-208
2       00:0c:e6:00:30:98 161  161
     00d:00h:00m:25s  238  238  #2-2F-Sw-208
2       00:0c:e6:00:30:98 161  161  mwf-wpapeap
     00d:00h:00m:25s  231  231  #2-2F-Sw-208
2       00:0c:e6:00:30:98 161  161  mwf-wpapsk
     00d:00h:00m:25s  231  231  #2-2F-Sw-208
3       00:0c:e6:00:17:bf 1       1       mwf-wpapeap
     00d:00h:00m:00s  194  194  #3-2F-Exec-201
3       00:0c:e6:00:18:7d 1       1       mwf-wpapeap
     00d:00h:00m:00s  194  194  #3-2F-Exec-201
3       00:0c:e6:00:30:98 1       1
     00d:00h:00m:00s  176  176  #3-2F-Exec-201
6       00:0c:e6:00:17:94 1       1       mwf-wpapeap
     00d:00h:00m:00s  176  175  #3-2F-Exec-201
6       00:0c:e6:00:17:bf 1       1       mwf-wpapeap
     00d:00h:00m:00s  217  217  #6-1F-CS-AP201
```
Access Point and Radio Commands

10 00:0c:e6:00:17:94 1 1 mwf-wpapeap
 00d:00h:00m:00s 195 195 #10-1F-Mktg-208
10 00:0c:e6:00:18:7d 2 1 mwf-wpapeap
 00d:00h:00m:00s 216 216 #10-1F-Mktg-208
10 00:0c:e6:00:30:98 161 161 mwf-wpapeap
 00d:00h:00m:06s 172 172 #10-1F-Mktg-208
10 00:0c:e6:00:30:98 161 161 mwf-wpapsk
 00d:00h:00m:06s 172 172 #10-1F-Mktg-208
11 00:0c:e6:00:30:98 161 161
 00d:00h:00m:00s 180 180 AP-11

AP Siblings (15 entries)

mc1000#

mc1000# show ap-siblings 00:0c:e6:00:30:98
AP Siblings

AP ID : 3
Serial Number : 00:0c:e6:00:30:98
Channel : 1
Confirmed-Channel : 1
SSID :
Last Activity : 00d:00h:00m:03s
Previous RSSI : 173
Current RSSI : 174
AP Name : #3-2F-Exec-201
AP ID : 10
Serial Number : 00:0c:e6:00:30:98
Channel : 161
Confirmed-Channel : 161
SSID : mwf-wpapeap
Last Activity : 00d:00h:00m:00s
Previous RSSI : 171
Current RSSI : 171

Related Commands

show ap
show ap-connectivity
show ap-discovered
show ap-swap

Displays the access point replacement table.

Syntax

```
show ap-swap
```

Command Mode

EXEC

Default

None

Usage

Displays access point swap information in the AP Replacement Table. The AP Serial number is the MAC address of AP that is being replaced with the MAC address listed in the New AP Serial Number.

Examples

```
mc1000# show ap-swap
AP Serial Number    New AP Serial Number
00:0c:e6:00:05:02   00:0c:e6:00:30:98
 AP Replacement Table (1 entry)
mc1000#
```

Related Commands

```
swap
```
show ess-ap

Displays the ESS-AP table for the access point.

Syntax

show ess-ap ap

Command Mode

AP configuration

Default

None

Usage

Displays the ESS-AP table information including ESSID, access point name, and BSSID.

Examples

mc1000# show ess-ap ap 1

<table>
<thead>
<tr>
<th>ESS Profile</th>
<th>AP ID</th>
<th>AP Name</th>
<th>IfIndex</th>
<th>Channel</th>
<th>BSSID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mwflx</td>
<td>16</td>
<td>CustSup</td>
<td>1</td>
<td>6</td>
<td>00:0c:e6:02:5f:67</td>
</tr>
<tr>
<td>mwflx</td>
<td>18</td>
<td>Mktg</td>
<td>1</td>
<td>6</td>
<td>00:0c:e6:02:5f:67</td>
</tr>
<tr>
<td>mwflx</td>
<td>26</td>
<td>AP-26</td>
<td>1</td>
<td>6</td>
<td>00:0c:e6:01:3c:5f</td>
</tr>
<tr>
<td>mwflx</td>
<td>28</td>
<td>AP-28</td>
<td>1</td>
<td>6</td>
<td>00:0c:e6:01:77:df</td>
</tr>
<tr>
<td>mwflx</td>
<td>29</td>
<td>AP-29</td>
<td>1</td>
<td>6</td>
<td>00:0c:e6:01:3c:5f</td>
</tr>
</tbody>
</table>

mc1000#
show interfaces Dot11Radio

Displays the configuration of AP wireless interfaces.

Syntax

show interfaces Dot11Radio [ap_id [if_index]]

ap_id
Optional. The ID of the access point.

if_index
Optional. The ID of the interface.

Command Mode
EXEC

Default
None

Usage
Displays the configuration of all AP wireless interfaces or optionally, for the specified AP. Enter the ID number to specify a particular access point.

Examples

mc1000# show interfaces Dot11Radio

<table>
<thead>
<tr>
<th>AP ID</th>
<th>AP Name</th>
<th>IfIndex</th>
<th>Op State</th>
<th>Channel</th>
<th>Short Preamble</th>
<th>AP Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>CustSup</td>
<td>1</td>
<td>Enabled</td>
<td>6</td>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>1</td>
<td>Enabled</td>
<td>6</td>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>26</td>
<td>AP-26</td>
<td>1</td>
<td>Enabled</td>
<td>6</td>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>28</td>
<td>AP-28</td>
<td>1</td>
<td>Enabled</td>
<td>6</td>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>29</td>
<td>AP-29</td>
<td>1</td>
<td>Enabled</td>
<td>6</td>
<td>on</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Wireless Interface Configuration (5 entries)

meru-wifi# show interfaces Dot11Radio 10

<table>
<thead>
<tr>
<th>AP ID</th>
<th>AP Name</th>
<th>IfIndex</th>
<th>AP Model</th>
<th>Admin State</th>
<th>Op State</th>
<th>Channel</th>
<th>Short Preamble</th>
<th>AP Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>#10-1F-Mktg-208</td>
<td>2</td>
<td>AP208</td>
<td>Up</td>
<td>Enabled</td>
<td>161</td>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>10</td>
<td>#10-1F-Mktg-208</td>
<td>1</td>
<td>AP208</td>
<td>Up</td>
<td>Enabled</td>
<td>1</td>
<td>on</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Wireless Interface Configuration (2 entries)

meru-wifi# show interfaces Dot11Radio 10 1

Wireless Interface Configuration

<table>
<thead>
<tr>
<th>AP ID</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`meru-wifi#`
<table>
<thead>
<tr>
<th>Description</th>
<th>ieee80211-10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Status</td>
<td>Up</td>
</tr>
<tr>
<td>Operational Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Last Change Time</td>
<td>2005/08/08 09:46:23</td>
</tr>
<tr>
<td>Radio Type</td>
<td>Meru RF2</td>
</tr>
<tr>
<td>MTU (bytes)</td>
<td>2346</td>
</tr>
<tr>
<td>Channel</td>
<td>1</td>
</tr>
<tr>
<td>Short Preamble</td>
<td>on</td>
</tr>
<tr>
<td>RF Band Support</td>
<td>802.11abg</td>
</tr>
<tr>
<td>RF Band Selection</td>
<td>802.11bg</td>
</tr>
<tr>
<td>Antenna Selection</td>
<td>Left</td>
</tr>
<tr>
<td>Transmit Power (dBm) (low,medium,high)</td>
<td>20,20,20</td>
</tr>
<tr>
<td>AP Mode</td>
<td>Normal</td>
</tr>
<tr>
<td>Fixed Channel</td>
<td>off</td>
</tr>
<tr>
<td>Scanning Channels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3,4,5,6,7,8,9,10,11,36,40,44,48,52,56,60,64,149,153,15</td>
</tr>
<tr>
<td></td>
<td>7,161,165</td>
</tr>
<tr>
<td>Protection Mechanism</td>
<td>wmm-txop</td>
</tr>
<tr>
<td>Protection Mode</td>
<td>on</td>
</tr>
<tr>
<td>Number of Antennas</td>
<td>2</td>
</tr>
</tbody>
</table>
show interfaces Dot11Radio antenna-property

Displays the properties of the AP antennas.

Syntax

```
show interfaces Dot11Radio antenna-property [[ap_ID] ifindex] connector
```

- **ap_ID**
 Optional. Displays antenna control information of the specified AP.

- **ifindex**
 Optional. Displays antenna control information of the specified AP wireless interface.

- **connector**
 Optional. Displays detailed antenna control information of the specified connector.

Command Mode

EXEC

Default

None

Usage

Use this command to display antenna properties. Without arguments, the display shows the properties for all APs. You can specify properties for a specific AP, interface index, or connector location. The properties that are displayed are APID, Interface Index, connector number (left=1, right=2), the RF band, gain, external or internal antenna type, and location.

Examples

```
mc1000# show interfaces Dot11Radio antenna-property
```

<table>
<thead>
<tr>
<th>AP ID</th>
<th>IfIndex</th>
<th>Connector</th>
<th>RF Band</th>
<th>Gain (dBm)</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>Dual</td>
<td>5</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>Dual</td>
<td>5</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>External</td>
<td>Left</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>4</td>
<td>External</td>
<td>Right</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>Dual</td>
<td>5</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>5</td>
<td>External</td>
<td>Left</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>5</td>
<td>External</td>
<td>Right</td>
</tr>
</tbody>
</table>
The following display show the antenna properties for AP 5:

```
mcl000# # show interfaces Dot11Radio antenna-property 5
```

<table>
<thead>
<tr>
<th>AP ID</th>
<th>IfIndex</th>
<th>Connector</th>
<th>RF Band</th>
<th>Gain (dBm)</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>Dual</td>
<td>5</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>unknown</td>
<td>Left</td>
</tr>
</tbody>
</table>

Antenna Property(4)

The following display show the antenna properties for AP 5, interface 1:

```
mcl000# show interfaces Dot11Radio antenna-property 5 1
```

<table>
<thead>
<tr>
<th>AP ID</th>
<th>IfIndex</th>
<th>Connector</th>
<th>RF Band</th>
<th>Gain (dBm)</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>unknown</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Dual</td>
<td>0</td>
<td>unknown</td>
<td>Right</td>
</tr>
</tbody>
</table>

Antenna Property(2)

The following display show the antenna properties for AP 5, interface 1, connector 1:

```
mcl000# show interfaces Dot11Radio antenna-property 5 1 1
```

Antenna Property

<table>
<thead>
<tr>
<th>AP ID</th>
<th>Interface Index</th>
<th>Connector</th>
<th>RF Band</th>
<th>Antenna Gain (dBm)</th>
<th>Link Type</th>
<th>Antenna Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Dual</td>
<td>4</td>
<td>Point-To-Multi-Point</td>
<td>unknown</td>
<td>Left</td>
</tr>
</tbody>
</table>

Related Commands

antenna-property
show interfaces Dot11Radio statistics

Displays the statistics of the radios.

Syntax

```
show interfaces Dot11Radio statistics [(ap_ID) ifindex]
```

- `ap_ID` Optional. Displays statistics for the specified AP.
- `ifindex` Optional. Displays statistics for the specified AP wireless interface.

Command Mode

EXEC

Default

None

Usage

Use this command to display statistics for the APs and their interfaces. Without arguments, the display shows the properties for all APs. You can specify properties for a specific AP, and an interface index. The following table describes the statistics:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Index</td>
<td>Unique identification number of the wireless interface.</td>
</tr>
<tr>
<td>AP ID</td>
<td>Unique numeric identifier for the access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point.</td>
</tr>
<tr>
<td>Failed Count</td>
<td>Total number of failed transmissions.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>Total number of frames that are retransmitted at least once.</td>
</tr>
<tr>
<td>Multiple Retry Count</td>
<td>Total number of frames that are retransmitted more than once.</td>
</tr>
<tr>
<td>Frame Duplicate Count</td>
<td>Total number of frames received more than once.</td>
</tr>
<tr>
<td>RTS Success Count</td>
<td>Total number of RTS frames that are successfully transmitted.</td>
</tr>
<tr>
<td>RTS Failure Count</td>
<td>Total number of RTS frames that are unsuccessfully transmitted.</td>
</tr>
<tr>
<td>ACK Failure Count</td>
<td>Total number of ACK failures—the frames for which the ACKs were not received.</td>
</tr>
<tr>
<td>WEP Undecryptable Count</td>
<td>Total number of frames received with nondecryptable WEP keys ACKs were not received.</td>
</tr>
</tbody>
</table>
Statistic Description

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS Error Count</td>
<td>Total number of packets received which failed Frame Check Sequence validation due to packet corruption.</td>
</tr>
<tr>
<td>PLCP Error Count</td>
<td>Number of CRC errors and invalid rate errors at the PLCP layer.</td>
</tr>
<tr>
<td>Transmit Frame Count</td>
<td>Total number of whole frames transmitted, including unicast, broadcast, and multicast frames.</td>
</tr>
<tr>
<td>Multicast Transmit Frame Count</td>
<td>Total number of non-unicast fragments transmitted.</td>
</tr>
<tr>
<td>Transmit Fragment Count</td>
<td>Total number of unicast fragments transmitted.</td>
</tr>
<tr>
<td>Multicast Received Frame Count</td>
<td>Total number of non-unicast frames received.</td>
</tr>
<tr>
<td>Received Fragment Count</td>
<td>Total number of frames received that has the fragment bit set.</td>
</tr>
<tr>
<td>Received Retried Frame Count</td>
<td>Number of received frames that are not duplicates and have the retry bit set. Usually indicates a bad receive path.</td>
</tr>
<tr>
<td>Received Unicast Frame Count</td>
<td>Number of unicast frames received.</td>
</tr>
<tr>
<td>Assigned Station Count</td>
<td>Number of stations assigned to the AP by the controller.</td>
</tr>
<tr>
<td>Associated Station Count</td>
<td>Number of stations currently associated with the access point.</td>
</tr>
<tr>
<td>Discovered Station Count</td>
<td>Number of stations transmitting on the same channel as the access point.</td>
</tr>
</tbody>
</table>

Examples

```
mc1000# show interfaces Dot11Radio statistics
```

<table>
<thead>
<tr>
<th>IfIndex</th>
<th>AP-ID</th>
<th>AP-Name</th>
<th>Failed-Ct</th>
<th>TX-Frms</th>
<th>Multi-TX-Frms</th>
<th>TX-Frag</th>
<th>Multi-RX-Frms</th>
<th>RX-Frag</th>
<th>RX-Retry-Frms</th>
<th>RX-Ucast-Frms</th>
<th>Assign-Sta-Count</th>
<th>Assoc-Sta-Count</th>
<th>Discvd-Sta-Count</th>
<th>Avg-thruput</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>#2-2F-Sw-208</td>
<td>18406</td>
<td>3075610</td>
<td>3061807</td>
<td>3075609</td>
<td>1091430</td>
<td>1173478</td>
<td>288956</td>
<td>82048</td>
<td>43</td>
<td>0</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>#2-2F-Sw-208</td>
<td>178236</td>
<td>52958741</td>
<td>2888802</td>
<td>52958717</td>
<td>604394</td>
<td>50453872</td>
<td>49849478</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>#3-2F-Exec-201</td>
<td>789047</td>
<td>4898562</td>
<td>3705673</td>
<td>4898562</td>
<td>2650275</td>
<td>3090773</td>
<td>440498</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>#6-1F-CS-AP201</td>
<td>702111</td>
<td>2876537</td>
<td>1358377</td>
<td>2876537</td>
<td>3310601</td>
<td>3872927</td>
<td>562326</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>#10-1F-Mktg-208</td>
<td>413929</td>
<td>2521041</td>
<td>1812965</td>
<td>2521041</td>
<td>2180643</td>
<td>2286533</td>
<td>105890</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>153</td>
<td>0</td>
</tr>
</tbody>
</table>

Access Point and Radio Commands 275
mc1000# show interfaces Dot11Radio statistics 10 1
Wireless (802.11) Statistics

Interface Index : 1
AP ID : 10
AP Name : #10-1F-Mktg-208
Failed Count : 415023
Retry Count : 20402
Multiple Retry Count : 2978
Frame Duplicate Count : 6133466
RTS Success Count : 0
RTS Failure Count : 0
ACK Failure Count : 436739
WEP Undecryptable Count : 0
FCS Error Count : 2802053
PLCP Error Count : 890471
Transmit Frame Count : 2524894
Multicast Transmit Frame Count : 1814667
Transmit Fragment Count : 2524894
Multicast Received Frame Count : 2186170
Received Fragment Count : 2292495
Received Retried frame Count : 120360
Received Unicast frame Count : 106325
Assigned Station Count : 5
Associated Station Count : 2
Discovered Station Count : 163
Average throughput : 0
show regulatory-domain

Displays the regulatory information for the country.

Syntax

`show regulatory-domain`

Command Mode

Privileged EXEC

Default

None

Usage

This command displays the regulatory information for the country the controller is configured for.

Examples

```
mc1000# show regulatory-domain
RF Regulatory Domain

Country Code : USA
Country Name : United States Of America
Default B/G Channel : 6
Default A Channel : 40
```
show statistics top10-ap-problem

Displays a list of the top problem access points.

Syntax

show statistics top10-ap-problem

Command Mode

User EXEC

Default

None

Usage

Use the show statistics top10-ap-problem command to display a list of the top problem access points. Ten access points with the highest number of packet retransmissions, with a minimum of 20% for transmissions. Only downlink packet transmissions are considered because uplink packet losses cannot be reliably computed in a multicell WLAN deployment.

Examples

The following command displays the most top problem access points.

mc1000# show statistics top10-ap-problem
AP AP Name If Tx Loss Percentage
2 #2-2F-Sw- 2 37
Top 10 problem AP statistics(1 entry)
mc1000#

Table 4 describes the fields of the show statistics top10-ap-problem output.

Table 4: Output for show statistics top10-ap-problem

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Unique ID number of the access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point.</td>
</tr>
<tr>
<td>If</td>
<td>Interface number of the AP.</td>
</tr>
<tr>
<td>Tx Loss Percentage</td>
<td>Percentage of packets lost during transmission (no acknowledgement).</td>
</tr>
</tbody>
</table>

Related Commands

show statistics top10-ap-talker
show statistics top10-ap-talker

Displays the 10 most active access points, based on the sum of transmission and reception packet rates per minute during the last polling period.

Syntax

show statistics top10-ap-talker

Command Mode

EXEC

Default

None

Usage

Use the show statistics top10-ap-talker command to display the 10 most active access points, based on the sum of transmission and reception packet rates per minute during the last polling period. The top talker access points table shows activity based on the number of frames per minute, not actual bytes transmitted or airtime consumed.

Examples

The following command displays the most top active access points.

```
mcl000# show statistics top10-ap-talker
AP  AP Name   If Rx Frames/min  Tx Frames/min
2   #2-2F-Sw- 2  10625300       11452490
3   #3-2F-Exe 1  125023         1360549
6   #6-1P-CS- 1  195022         884976
2   #2-2F-Sw- 1  38201          909269
10  #10-1F-Mk 1  57274          714166
8   #8-1F-Dem 1  113896         325462
10  #10-1F-Mk 2  53540          383962
11  AP-11     1  5860           201866
11  AP-11     2  9329           202435
1   #1-2F-QA- 1  0              0

Top 10 talker AP statistics(10)
mcl000#
```

Table 4 describes the fields of the show statistics top10-ap-talker output.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Unique ID number of the access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point.</td>
</tr>
</tbody>
</table>

Table 5: Output for show statistics top10-ap-talker
Table 5: Output for show statistics top10-ap-talker

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If</td>
<td>Interface number of the AP.</td>
</tr>
<tr>
<td>Rx Frames/min</td>
<td>Number of frames received during the last polling period.</td>
</tr>
<tr>
<td>Tx Frames/min</td>
<td>Number of frames transmitted during the last polling period.</td>
</tr>
</tbody>
</table>

Related Commands

show statistics top10-ap-problem
show topoap

Displays the APs seen by the system.

Syntax

```
show topoap
```

Command Mode

Privileged EXEC

Default

None

Usage

Displays access point information including allocated resources, number of neighbors, number attached, and number assigned.

Examples

```
mc1000# show topoap
AP ID AP Name         RsRq        RsAlloc     Neighbor    Attached    Assigned
2     #2-2F-Sw-208    0           0           4           22          2
10    #10-1F-Mktg-208 0           0           5           23          11
3     #3-2F-Exec-201  0           0           5           22          7
11    AP-11           0           0           2           2           0
6     #6-1F-CS-AP201  0           0           4           23          6
8     #8-1F-DemoArea- 0           0           4           20          9

AP Wireless Resources (6 entries)
```

Related Commands

```
show topoapap
```
show topoapap

Displays the AP/AP edge records in the system.

Syntax

```
show topoapap
```

Command Mode

Privileged EXEC

Default

None

Usage

This command lists APs that are able to hear one another, similar to the `show ap-siblings` output information. Regardless of what APs display in the output, all APs on the same BSSID are coordinated.

Examples

```
mc1000# show topoapap
RSSI between APs

<table>
<thead>
<tr>
<th>Detecting AP ID</th>
<th>Detecting AP Name</th>
<th>Sibling AP ID</th>
<th>Sibling AP Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>AP-26</td>
<td>16</td>
<td>CustSup</td>
</tr>
<tr>
<td>26</td>
<td>AP-26</td>
<td>18</td>
<td>Mktg</td>
</tr>
<tr>
<td>26</td>
<td>AP-26</td>
<td>28</td>
<td>AP-28</td>
</tr>
<tr>
<td>26</td>
<td>AP-26</td>
<td>29</td>
<td>AP-29</td>
</tr>
<tr>
<td>16</td>
<td>CustSup</td>
<td>26</td>
<td>AP-26</td>
</tr>
<tr>
<td>16</td>
<td>CustSup</td>
<td>18</td>
<td>Mktg</td>
</tr>
<tr>
<td>16</td>
<td>CustSup</td>
<td>28</td>
<td>AP-28</td>
</tr>
<tr>
<td>16</td>
<td>CustSup</td>
<td>29</td>
<td>AP-29</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>26</td>
<td>AP-26</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>16</td>
<td>CustSup</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>28</td>
<td>AP-28</td>
</tr>
<tr>
<td>18</td>
<td>Mktg</td>
<td>29</td>
<td>AP-29</td>
</tr>
<tr>
<td>28</td>
<td>AP-28</td>
<td>26</td>
<td>AP-26</td>
</tr>
<tr>
<td>28</td>
<td>AP-28</td>
<td>16</td>
<td>CustSup</td>
</tr>
<tr>
<td>28</td>
<td>AP-28</td>
<td>18</td>
<td>Mktg</td>
</tr>
<tr>
<td>29</td>
<td>AP-29</td>
<td>26</td>
<td>AP-26</td>
</tr>
<tr>
<td>29</td>
<td>AP-29</td>
<td>29</td>
<td>CustSup</td>
</tr>
<tr>
<td>29</td>
<td>AP-29</td>
<td>18</td>
<td>Mktg</td>
</tr>
</tbody>
</table>

RSSI between APs(20)#
```
Related
Commands

show topoap
show ap-siblings
swap

Configures the MAC address of a replacement AP.

Syntax

```
swap old_mac_address new_mac_address

no swap ap old_mac_address
```

```
old_mac_address Specifies the MAC address of an AP that is to be replaced.
new_mac_address Specifies the MAC address of the replacement AP.
```

Command Mode

Global configuration mode

Default

Limitations

An AP150 or RS4000 can only be replaced with another AP150 or RS4000, respectively.

Usage

This command updates settings associated an AP ID. Each AP has an ID and a serial number (its MAC address) that are used for tracking purposes. This command equates the serial number of an AP that you want to replace at your site with a serial number of a new AP. By linking the two serial to an AP ID number in a replacement table, the system can update the new AP with the configured features from an old AP. This saves you from having to re-enter settings for the replacement AP. The settings that are tracked are the Channel number, preamble, and power settings.

Use the no form of the command to remove an AP entry from the AP replacement table.

Run this command, physically replace the AP, and reboot the system. The replacement table is checked, and then the changes are implemented. Once the new AP is updated, its entry is removed from the replacement table.

Examples

```
mc1000(config)# swap ap 00:0c:e6:bc:61:4e 00:11:11:11:01
```

```
mcl000(config)# show ap-swap
AP Serial Number New AP Serial Number
00:0c:e6:bc:61:4e 00:11:11:11:01
```

```
AP Replacement Table(1 entry)
```
Related Commands

show ap-swap
Chapter 10
Rogue AP Detection Commands

Note: The commands in this chapter are not supported for the AP150 or RS4000 deployment.

The commands contained in this chapter are used for configuring and displaying information about Rogue AP detection:

- `rogue-ap acl`
- `rogue-ap aging`
- `rogue-ap assigned-aps`
- `rogue-ap blocked`
- `rogue-ap detection`
- `rogue-ap mitigation`
- `rogue-ap mitigation-frames`
- `rogue-ap operational-time`
- `rogue-ap scanning-channels`
- `rogue-ap scanning-time`
- `show rogue-ap acl`
- `show rogue-ap blocked`
- `show rogue-ap globals`
- `show rogue-ap-list`
rogue-ap acl

Adds the BSSID of an access point to the access control list (ACL) for the WLAN as an authorized BSSID.

Syntax

`rogue-ap acl bssid`

`no rogue-ap acl bssid`

`bssid` BSSID of the access point to be added to the access control list as a permitted BSSID in the format ff:ff:ff:ff:ff:ff.

Command Mode

Global configuration

Default

None

Limitations

This command is not supported on the AP150 or RS4000.

Usage

Use the `rogue-ap acl` command to specify that an access point with a particular BSSID be added to the ACL as an authorized access point. All Meru Wireless LAN System ESSs known to the controller are automatically included in the ACL.

A BSSID cannot be listed in the ACL as an authorized BSSID and also listed on the list of blocked BSSIDs. If you want to add a BSSID to the authorized list, and the BSSID is currently on the blocked list, you must remove the BSSID from the blocked list (using the command `no rogue-ap blocked`). Then you can add the BSSID to the authorized list.

Use the `no` form to delete an authorized BSSID entry from the ACL.

Examples

The following command adds the BSSID 00:0e:cd:cb:0f:bc to the ACL as a permitted access BSSID:

```
mc1000(config)# rogue-ap acl 00:0e:cd:cb:0f:bc
mc1000(config)#
```

Related Commands

`rogue-ap blocked`

`rogue-ap mitigation`

`show rogue-ap acl`
rogue-ap aging

Configures the amount of time an undetected rogue AP alarm stays active.

Syntax

```
rogue-ap aging aging-time
```

`aging-time` Amount of time an alarm for an unknown or blocked BSSID that is no longer detected remains active. Value can be from 60 through 86,400 seconds.

Command Mode

Global configuration

Default

The default rogue AP alarm aging time is 60 seconds.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command configures the amount of time an alarm for an unknown or blocked BSSID that is no longer detected remain active. After the aging-time elapses, any rogue AP that is no longer detected is automatically removed from the alarm list and its alarm is cleared.

Examples

The following command sets the rogue AP alarm aging time to 300 seconds:

```
mc1000(config)# rogue-ap aging 300
```

Related Commands

`rogue-ap mitigation`
rogue-ap assigned-aps

Configures the number of APs that perform rogue AP mitigation.

Syntax

```
rogue-ap assigned-aps number_aps
```

number_aps Specifies the number of APs that participate in rogue AP mitigation. The valid range is between 1 and 20 APs.

Command Mode

Global configuration

Default

The default number of mitigating APs is 3.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command configures the maximum number of APs that will attempt to perform rogue AP mitigation.

In the Meru Wireless LAN System WLAN, only a subset of APs perform mitigation. This reduces the number of mitigation frames sent over the airwaves while maintaining network throughput performance. The APs that are closest to the rogue AP send mitigation frames.

Examples

The following command sets the number of APs assigned to perform mitigation to 5:

```
mc1000(config)# rogue-ap assigned-aps 5
mc1000(config)#
```

Related Commands

rogue-ap mitigation
rogue-ap blocked

Specifies the BSSID of an access point to be designated as an unauthorized access point in the WLAN.

Syntax

```
rogue-ap blocked bssid
no rogue-ap blocked bssid
```

bssid
BSSID of the access point to be designated as blocked in the ACL, which means the access point is considered unauthorized in the WLAN. Must be specified in hexadecimal format (xx:xx:xx:xx:xx:xx)

Command Mode
Global configuration

Default
None

Limitations
This command is not supported on the AP150 or RS4000.

Usage
Use the `rogue-ap blocked` command to specify that an access point with a particular BSSID be added to the blocked list.

If the rogue AP mitigation mode is “selected” (using the command `rogue-ap mitigation`), then only rogue stations connecting to the BSSIDs in this list will be mitigated.

A BSSID cannot be listed in the ACL as an authorized BSSID and also listed on the list of blocked BSSIDs. If you want to add a BSSID to the blocked list, and the BSSID is currently on the authorized list, you must remove the BSSID from the authorized list (using the command `no rogue-ap acl`). Then you can add the BSSID to the blocked list.

Use the `no` form to delete a BSSID entry from the blocked list.

Examples
The following command specifies the BSSID 00:02:2d:61:0a:2c as a blocked BSSID in the ACL:

```
mc1000(config)# rogue-ap blocked 00:02:2d:61:0a:2c
mc1000(config)#
```
Related Commands

- `no rogue-ap acl`
- `show rogue-ap blocked`
rogue-ap detection

Enables rogue AP detection.

| Syntax | rogue-ap detection
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no rogue-ap detection</td>
</tr>
</tbody>
</table>

Command Mode
- Global configuration

Default
- Rogue AP detection is disabled by default.

Limitations
- This command is not supported on the AP150 or RS4000.

Usage
When you enable rogue AP detection, the Meru Wireless LAN System scans for and detects access points. Access points that are discovered are compared to an access control list (ACL) that lists access points by their BSSIDs. Access points in the ACL are designated as authorized or blocked. Authorized access points are known access points that are allowed to operate in the WLAN. Blocked access points are considered unauthorized access points in the WLAN. All Meru Wireless LAN System ESSs are automatically added to the ACL.

Use the **no** form to disable rogue AP detection.

Examples
The following command enables rogue AP detection:

```
mcl000(config)# rogue-ap detection
mcl000(config)#
```

Related Commands
- `rogue-ap acl`
- `rogue-ap blocked`
rogue-ap mitigation

Configures the level of rogue AP mitigation.

Syntax

rogue-ap mitigation {all | none | selected}

- **all**: Enables rogue AP mitigation, and all BSSIDs detected that are not specified as authorized in the rogue AP ACL are blocked.
- **none**: Disables rogue AP mitigation.
- **selected**: Enables rogue AP mitigation only for the BSSIDs that are listed in the blocked list.

Command Mode

Global configuration

Default

Rogue AP mitigation is disabled by default.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

Rogue AP mitigation prevents stations from associating with a rogue AP. Enabling rogue AP mitigation allows you to prevent clients in the range of Meru Access Points from accessing the network through rogue APs.

Use the **rogue-ap mitigation** command to enable rogue AP mitigation for all BSSIDs not previously listed as authorized, or only for BSSIDs listed as blocked BSSIDs.

Examples

The following command enables rogue AP mitigation only for the BSSIDs on the blocked list:

```
mc1000(config)# rogue-ap mitigation selected
```

Related Commands

rogue-ap blocked
rogue-ap mitigation-frames

Configures the number of rogue AP mitigation frames sent out per channel, per mitigation interval.

Syntax

```
rogue-ap mitigation-frames number_frames
```

`number_frames` Sets the maximum number of mitigation frames per channel. The valid range is between 1 and 50, with the default set at 10.

Command Mode

Global configuration

Default

10 mitigation frames per channel is configured by default.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

Rogue AP mitigation prevents stations from associating with a rogue AP. This command sets the number of mitigation frames sent in each mitigation interval. This number does not have to match the number of rogue stations on each channel.

Examples

The following command sets the number of mitigation frames per channel to 25:

```
mc1000(config)# rogue-ap mitigation-frames 25
mc1000(config)#
```

Related Commands

`rogue-ap detection`
rogue-ap operational-time

Configures the amount of time APs spend in operational mode on the home channel.

Syntax

```
rogue-ap operational-time operational-time
```

`operational-time` Sets the number of milliseconds of operational time on the home channel. The valid range is from 100 to 5000 milliseconds. The default setting is 400 milliseconds.

Command Mode

Global configuration

Default

The default setting is 400 milliseconds of operational time.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

If scanning is enabled, this command sets the number of milliseconds that are spent in operational time, performing normal wireless services, on the home channel. This command is related to the `rogue-ap scanning-time` command. The channels that are scanned are determined by the `rogue-ap scanning channels` command.

When rogue AP scanning is enabled, for any given period, the AP spends part of the time scanning channels, and part of the time performing normal AP WLAN operations on the home channel. This cycle of scan/operate repeats so quickly that both tasks are performed without noticeable network operation degradation.

Scanning on non-home channels is performed by dedicated scanning APs (set with the `mode` command in the Dot11Radio interface configuration sub-mode) and by APs without associated stations.

Examples

The following command sets the operational time to 2500 milliseconds:

```
mc1000(config)# rogue-ap operational-time 2500
mc1000(config)#
```

Related Commands

`rogue-ap mitigation`
rogue-ap scanning-channels

Configures the channels that are scanned in scan mode.

Syntax

`rogue-ap scanning-channel channel-list`

channel-list Lists the set of channels that are to be scanned for rogue APs. Use a comma separated list from 0 to 256 characters.

Command Mode

Global configuration

Default

The complete set of default channels for the United States are 1,2,3,4,5,6,7,8,9,10,11,36,40,44,48,52,56,60,64,149,153,157,161,165

Limitations

This command is not supported on the AP150 or RS4000.

Usage

If scanning is enabled, this command specifies the set of channels that are scanned for rogue APs.

The channels that are scanned by a particular AP are determined by the model of AP. AP201 models scan all channels on the single interface; AP208 interface 1 scans all channels on the 802.11bg band; interface 2 scans all channels on the 802.11a band.

Scanning is performed by dedicated scanning APs (set with the mode command in the Dot11Radio interface configuration sub-mode) and by APs without associated stations.

When rogue AP scanning is enabled, for any given period, the AP spends part of the time scanning channels (determined by the rogue-ap scanning-time command), and part of the time performing normal AP WLAN operations on the home channel (determined by the rogue-ap operational-time command). This cycle of scan/operate repeats so quickly that both tasks are performed without noticeable network operation degradation.

Examples

The following command sets the scanning channels to 1, 6, 11, 36, 44, 52, 60:

```
mc1000(config)# rogue-ap scanning-channels 1,6,11,36,44,52,60
mc1000(config)#
```
Related Commands

- mode
- rogue-ap detection
- rogue-ap mitigation
- rogue-ap operational-time
- rogue-ap scanning-time
rogue-ap scanning-time

Configures the amount of time APs spends scanning each channel other than the operational channel.

Syntax

```
rogue-ap scanning-time scanning-time
```

scanning-time Sets the number milliseconds of scanning time. The valid range is from 100 to 500 milliseconds. The default setting is 100 milliseconds.

Command Mode

Global configuration

Default

The default setting is 100 milliseconds of scanning time.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

If scanning is enabled, this command sets the number of milliseconds that are spent scanning each channel in the global list of channels. This command is related to the `rogue-ap operational-time` command. The channels that are scanned are determined by the `rogue-ap scanning-channels` command.

When rogue AP scanning is enabled, for any given period, the AP spends part of the time scanning channels, and part of the time performing normal AP WLAN operations on the home channel.

Scanning on non-home channels is performed by dedicated scanning APs (set with the `mode` command in the Dot11Radio interface configuration sub-mode) and by APs without associated stations.

Examples

The following command sets the scanning time to 200 milliseconds:

```
mc1000(config)# rogue-ap scanning-time 200
mc1000(config)#
```

Related Commands

`rogue-ap detection`

`rogue-ap mitigation`

`rogue-ap operational-time`

`rogue-ap scanning-channels`
show rogue-ap acl

Displays the rogue AP ACL.

Syntax

show rogue-ap acl

Command Mode

EXEC

Default

None

Limitations

This command is not supported on the AP150 or RS4000.

Examples

The following command displays the list of access points (specified by BSSID) permitted to operate in the WLAN:

mc1000# show rogue-ap acl

BSSID

f4:3c:00:1f:f2:d3
00:0c:e6:cd:cd:cd
00:0c:e6:c2:d5:b1
 Allowed APs(3)

Related Commands

rogue-ap acl
show rogue-ap blocked

Displays the list of blocked BSSIDs.

Syntax

`show rogue-ap blocked`

Command Mode

EXEC

Default

None

Limitations

This command is not supported on the AP150 or RS4000.

Examples

The following command displays the list of blocked access points (specified by BSSID):

```
mcl000# show rogue-ap blocked
```

<table>
<thead>
<tr>
<th>BSSID</th>
<th>Creation Time</th>
<th>Last Reported Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0c:e6:20:c1:48</td>
<td>2005/08/01 20:35:35</td>
<td>-</td>
</tr>
</tbody>
</table>

 Blocked APs(1 entry)

Related Commands

`rogue-ap acl`
show rogue-ap globals

Displays current rogue AP parameter settings.

Syntax

show rogue-ap globals

Command Mode

EXEC

Default

None

Limitations

This command is not supported on the AP150 or RS4000.

Examples

The following command displays the current rogue AP parameter settings:

```
mcl000> show rogue-ap globals
Global Settings
Detection                : off
Mitigation               : none
Rogue AP Aging (seconds) : 300
mcl000>
```

Related Commands

rogue-ap aging
rogue-ap detection
rogue-ap mitigation
rogue-ap mitigation
show rogue-ap-list

Displays the list of all rogue APs.

Syntax

```
show rogue-ap-list
```

Command Mode

Privileged EXEC

Default

None

Limitations

This command is not supported on the AP150 or RS4000.

Examples

The following command displays the list of rogue access points (specified by BSSID):

```
mc1000# show rogue-ap-list
```

<table>
<thead>
<tr>
<th>Rogue_AP_MAC</th>
<th>Type</th>
<th>Channel</th>
<th>SSID</th>
<th>BSSID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meru_AP1_ID</td>
<td>Last_AP1</td>
<td>RSSI_AP1</td>
<td>Meru_AP2_ID Last_AP2</td>
</tr>
<tr>
<td>00:00:4c:1a:84:9c</td>
<td>STATION 11</td>
<td>11</td>
<td>00d:00h:00m:00s -77 2</td>
<td>00d:00h:00m:00s 0 0</td>
</tr>
<tr>
<td>00:0c:e6:96:37:81</td>
<td>4</td>
<td>-82 0</td>
<td>00d:00h:00m:00s -77 2</td>
<td>00d:00h:00m:00s 0 0</td>
</tr>
<tr>
<td>00:03:2a:00:3d:be</td>
<td>STATION 11</td>
<td>11</td>
<td>00d:00h:00m:00s -75 4</td>
<td>00d:00h:00m:00s 0 0</td>
</tr>
<tr>
<td>00:03:2a:00:6a:0e</td>
<td>STATION 11</td>
<td>11</td>
<td>00d:00h:00m:00s -74 4</td>
<td>00d:00h:00m:00s 0 0</td>
</tr>
</tbody>
</table>
The commands contained in this chapter are used to configure and display information about MAC filtering and access control lists:

- `access-list deny`
- `access-list deny import`
- `access-list permit`
- `access-list permit import`
- `access-list radius-server`
- `access-list state`
- `show access-list deny`
- `show access-list permit`
- `show access-list state`
access-list deny

Adds the MAC address of a station to the deny list, which denies stations access to the network.

Syntax

```
access-list deny mac-address
no access-list deny {mac-address | all}
```

Parameter

- `mac-address`: MAC address of the station to be denied network access. Must be in hexadecimal format (nn:nn:nn:nn:nn:nn). A maximum of 900 addresses are allowed.
- `all`: When the all parameter is specified, all MAC addresses specified in the deny list are removed.

Command Mode

Global configuration

Default

None

Usage

MAC address access list filtering controls access to the WLAN by permitting or denying access based on specific MAC addresses contained in an access or deny list. A deny list contains a list of client MAC addresses that are denied access to the WLAN.

A Deny ACL, which takes precedence over access that may be allowed through the RADIUS Server, can be used to immediately deny access to a station. It allows administrators to “black list” certain clients if they are misbehaving (for example, if they have a virus or are attacking other devices).

Before creating a permit or deny list, you must enable ACL using the **access-list state** command before MAC addresses are permitted or denied. Only one list can be enabled at any given time; a permit and deny list cannot be enabled at the same time.

Use the no form to delete one entry or all entries in the list that denies stations access to the network.

Examples

The following command adds the MAC address ab:cd:dc:ae:fb to the deny list:

```
mcl000(config)# access-list deny ab:cd:dc:ae:fb
mcl000(config)#
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>access-list state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>access-list permit</td>
</tr>
<tr>
<td></td>
<td>show access-list deny</td>
</tr>
</tbody>
</table>
access-list deny import

Imports a text file of MAC addresses to be added to the deny list.

Syntax

```
access-list deny import file
```

file Name of the file that contains the MAC addresses to add to the deny list. The filename must follow UNIX file naming conventions.

Command Mode

Global configuration

Default

None

Usage

If you have a list of MAC addresses to add to the deny list, you can create a text file listing all the MAC addresses, and import the text file. Importing a file listing MAC addresses is an alternative to using the *access-list deny* command for each MAC address.

When creating the text file to be imported, only include one MAC address, in hexadecimal format (`xx:xx:xx:xx:xx:xx`), per line. For example, the contents of a text file to be imported might look like the following:

```
00:04:23:87:89:71
00:06:25:a7:e9:11
00:07:e9:15:69:40
00:0c:30:be:f8:19
00:0c:e6:09:46:64
00:0c:e6:12:07:41
00:0c:e6:bd:01:05
```

After creating a text file, you must transfer the file to the controller filesystem. From the CLI, use the *copy* command to transfer the file to the controller. Use the *dir* command to verify that the file is in the controller /images directory.
Examples

The following command imports a text file named `acl` and adds the MAC addresses in the file to the deny list:

```plaintext
mc1000(config)# access-list deny import acl
00:04:23:87:89:71
00:06:25:a7:e9:11
00:07:e9:15:69:40
00:0c:30:be:f8:19
00:0c:e6:09:46:64
00:0c:e6:12:07:41
00:0c:e6:bd:01:05

Successfully Added : 7
Duplicate Entries   : 0
Invalid Format      : 0
Entries Processed  : 7
mc1000(config)#
```

Related Commands

- `copy`
- `dir`
- `show access-list deny`
- `show access-list state`
access-list permit

Adds the MAC address of a station to the permit list, which permits stations access to the network.

Syntax

```
access-list permit mac-address
no access-list permit {mac-address | all}
```

mac-address

MAC address of the station to be permitted network access. Must be in hexadecimal format (nn:nn:nn:nn:nn:nn). A maximum of 900 addresses are allowed.

all

When the **all** parameter is specified, all MAC addresses specified in the permit list are removed.

Command Mode

Global configuration

Default

None

Usage

MAC filtering controls access to the WLAN by permitting or denying access based on specific MAC addresses. A permit list contains a list of MAC addresses that are permitted access to the WLAN. A deny list contains a list of MAC addresses that are denied access to the WLAN.

Before creating a permit or deny list, you must enable ACL by using the **access-list state** command before MAC addresses are permitted or denied. Only one list can be enabled at any given time; a permit and deny list cannot be enabled at the same time. You can create permit and deny lists and disable them, making MAC filtering inactive.

Use the **no** form to delete one entry or all entries in the list that permits stations access to the network.

Examples

The following command adds the MAC address ab:cd:ba:dc:ae:fb to the permit list:

```
mc1000(config)# access-list permit ab:cd:ba:dc:ae:fb
mc1000(config)#
```

Related Commands

```
access-list permit import
access-list state
show access-list state
show access-list permit
```
access-list permit import

Imports a text file of MAC addresses to be added to the permit list.

Syntax

```
access-list permit import file
```

file Name of the file that contains the MAC addresses to add to the permit list. The filename must follow UNIX file naming conventions.

Command Mode

Global configuration

Default

None

Usage

If you have a list of MAC addresses to add to the permit list, you can create a text file listing all the MAC addresses, and import the text file. Importing a file listing MAC addresses is an alternative to using the `access-list permit` command for each MAC address.

When creating the text file to be imported, only include one MAC address, in hexadecimal format (**xx:**xx:**xx:**xx:*xx:xx), per line. For example, the contents of a text file to be imported might look like the following:

```
00:04:23:87:89:71
00:06:25:a7:e9:11
00:07:e9:15:69:40
00:0c:30:be:f8:19
00:0c:e6:09:46:64
00:0c:e6:12:07:41
00:0c:e6:bd:01:05
```

After creating a text file, you must transfer the file to the controller /images directory. From the CLI, use the `copy` command to transfer the file to the controller. Use the `dir` command to verify that the file is in the controller filesystem.

Examples

The following command imports a text file named `permit_acl` and adds the MAC addresses in the file to the permit list:

```
mc1000(config)# access-list permit import permit_acl
00:04:23:87:89:71
00:06:25:a7:e9:11
00:07:e9:15:69:40
00:0c:30:be:f8:19
00:0c:e6:09:46:64
00:0c:e6:12:07:41
00:0c:e6:bd:01:05
```
00:04:23:4b:68:6c
00:05:3c:08:c5:9e

Successfully Added : 7
Duplicate Entries : 0
Invalid Format : 0
Entries Processed : 7
mc1000(config)#

Related Commands

- copy
- dir
- show access-list permit
access-list radius-server

Enables RADIUS server MAC filtering.

Syntax

```
access-list radius-server profile
no access-list radius-server
```

profile Specifies the configuration details for the RADIUS server. The *profile* is created with the `radius-profile` command.

Command Mode

Global configuration

Default

RADIUS server disabled

Usage

Use the `access-list radius-server` command to enable MAC filtering from the remote RADIUS Server specified in the *profile*. Use the `no` form of the command to disable the RADIUS Server MAC filtering.

RADIUS Server MAC filtering can be used in conjunction with an enabled controller-based Permit ACL and Deny ACL, and the precedence is shown in the following table:

<table>
<thead>
<tr>
<th>RADIUS Server Setting</th>
<th>disabled</th>
<th>enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Filtering</td>
<td>no MAC filtering</td>
<td>RADIUS MAC filtering only</td>
</tr>
<tr>
<td>disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit ACL</td>
<td>allow client in Permit list only</td>
<td>check Permit list first; if not in Permit list, check RADIUS server</td>
</tr>
<tr>
<td>enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deny ACL</td>
<td>Deny list used only</td>
<td>if not in Deny list, check RADIUS server</td>
</tr>
<tr>
<td>enabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When RADIUS Server MAC filtering is enabled, station MAC addresses are set up and managed by the RADIUS Server. When a new station attempts to join the WLAN, the Controller queries the RADIUS server with the MAC address to determine whether the client is permitted. If the RADIUS server does not respond, or responds that the client is not authorized, the client is blocked from entering the WLAN. If the MAC address is on the Controller Deny list, the station is denied access, even if an entry exists in the RADIUS server for the user.
RADIUS server configuration is performed with the `radius-profile` command, which includes setting the RADIUS server IP address, secret key, port, and the delimiter used between MAC addresses in its authorization table.

The client authorization is cached for 30 minutes. If the client is inactive for more than 30 minutes, the client is dropped.

If the AP is rebooted, no client reauthorization is needed. If the Controller reboots, all clients must reauthorize. Additionally, the Radius server configuration must have been saved or it is lost.

Examples

The following command enables the RADIUS Server specified in the `main-auth` profile:

```
mc1000(config)# access-list radius-server main-auth
mc1000(config)#
```

The following command disables the RADIUS Server:

```
mc1000(config)# no access-list radius-server
mc1000(config)#
```

Related Commands

- `access-list deny`
- `access-list permit`
- `access-list state`
- `radius-profile`
- `show access-list state`
access-list state

Configures the ACL state.

| Syntax | access-list state {deny | disabled | permit} |
|--------|---|
| deny | Enable the deny ACL. |
| disabled | Change the ACL state to disabled. |
| permit | Enable the permit ACL. |

Command Mode

Global configuration

Default

Disabled

Usage

Use the `access-list state` command to determine the state of the access list. By default, the ACL is disabled. This command should be used before adding MAC addresses with the `access-list permit` or `access-list deny` commands.

MAC addresses have been input with the `access-list permit` or `access-list deny` commands are inactive until either of the lists are enabled with this command, and then the system must be rebooted.

Examples

The following command enables the permit list:

```
mc1000(config)# access-list state permit
mc1000(config)#
```

The following command enables the deny list:

```
mc1000(config)# access-list state deny
mc1000(config)#
```

The following command disables ACL:

```
mc1000(config)# access-list state disable
mc1000(config)#
```
Related Commands

- access-list deny
- access-list permit
- access-list radius-server
show access-list deny

Displays the list of MAC addresses in the deny ACL.

Syntax

show access-list deny

Command Mode

EXEC

Default

None

Usage

Use the show access-list deny command to see the deny list, which contains a list of MAC addresses that are denied access to the WLAN. In addition to creating a deny list, you must enable it before MAC addresses are denied. Only one list can be enabled at any given time; a permit and deny list cannot be enabled at the same time. You can create permit and deny lists and disable them, making MAC filtering inactive.

Examples

The following command displays the MAC addresses in the deny list:

```
mcl000# show access-list deny
MAC Address
  00:0c:e6:bd:01:05
  00:0c:e6:12:07:41
  00:0c:e6:09:46:64
  00:0c:30:be:f8:19
  00:07:e9:15:69:40
  00:06:25:a7:e9:11
  00:04:23:87:89:71
  Acl Deny Access Configuration (7 entries
mcl000#
```

Related Commands

access-list deny
access-list deny import
access-list state
show access-list permit

Displays the list of MAC addresses in the permit ACL.

Syntax

```
show access-list permit
```

Command Mode

EXEC

Default

None

Usage

Use the `show access-list permit` command to see the permit list, which contains a list of MAC addresses that are permitted access to the WLAN. You must enable it before MAC addresses are permitted. Only one MAC filtering list can be enabled at any given time; a permit and deny list cannot be enabled at the same time. You can create permit and deny lists and disable them, making MAC filtering inactive.

Examples

The following command displays the list of MAC addresses in the permit list:

```
mc1000# show access-list permit

MAC Address
00:0c:e6:bd:01:05
00:0c:e6:12:07:41
00:0c:e6:09:46:64
00:0c:30:be:f8:19
00:07:e9:15:69:40
00:06:25:a7:e9:11
00:04:23:87:89:71
00:40:96:51:eb:2b
Acl Allow Access Configuration (8 entries)
mc1000#
```

Related Commands

- `access-list permit`
- `access-list permit import`
- `access-list state`
show access-list state

Displays the status of the ACL configuration.

Syntax

show access-list state

Command Mode

EXEC

Default

None

Usage

This command shows whether MAC filtering is enabled or disabled (as set with the access-list state command) by showing whether the deny or the permit list is in use, and whether filtering using a RADIUS Server is active. If the ACL Environment State is enabled, only one MAC filtering list can be enabled at any given time: a permit and deny list cannot be enabled at the same time.

Examples

The following command shows the MAC filtering list:

```bash
mc1000# show access-list state
Acl Configuration

ACL Environment State : deny
RADIUS Profile Name : 
mc1000#
```

Related Commands

access-list deny
access-list permit
access-list radius-server
access-list state
Chapter 12
Quality-of-Service Commands

The commands contained in this chapter are used to configure and display information about the Quality of Service settings:

- action
- avgpacketrate
- droppolicy
- dscp
- dstip
- dstmask
- dstport
- peakrate
- priority
- qoscodec
- qosrule
- qosvars admission
- qosvars bwscaling
- qosvars cac-deauth
- qosvars calls-per-ap
- qosvars calls-per-bssid
- qosvars drop-policy
- qosvars enable
- qosvars load-balance-overflow
- qosvars max-stations-per-ap
- qosvars max-stations-per-bssid
- qosvars no enable
- qosvars sip-idle-timeout
- qosvars station-assign-age
- qosvars tcpttl
- qosvars ttl
- qosvars udpttl
- rspecrate
- rspecslack
- srcip
- srcmask
- srcport
- show phones
- show phone-calls
- show qoscodec
- show qosflows
- show qosrule
- show qosstats
- show qosvars
- show statistics call-admission-control
- tokenbucketrate
- tokenbucketsize
- trafficcontrol-enable
action

Specifies the action a QoS rule performs upon a packet.

Syntax

action {capture | drop | forward}

capture
Drop the packets matching the rule criteria.

forward
Forward the packets.

Command Mode

Qosrule Configuration

Default

The default action if a QoS rule is matched is to capture packets.

Usage

This command specifies the action to take for packets matching QoS criteria.

- Forward: A flow is given an explicit resource request, bypassing the QoS protocol detector and regardless of whether a QoS protocol was specified.
- Capture: A flow is given an explicit resource request by the QoS protocol detector as specified by the QoS protocol setting. This is the recommended action for static QoS rules that are H323/SIP-based.
- Drop: The flow is dropped.

Examples

The following command sets the action performed on packets to dropped:

mc1000 (config-qosrule)# action drop

Related Commands

qosrule
show qosrule
avgpacketrate

Specifies the average packet rate for the QoS rule.

Syntax

avgpacketrate \textit{avgpacketrate}

avgpacketrate The average packet rate is a number from 0 to 200 packets per second.

Command Mode

Qosrule configuration

Default

The default setting is 0.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command sets the average rate for packets to flow. If the rate is non-zero then the traffic specification (TSpec) token bucket rate must also be non-zero and priority is not allowed to be set to a non-zero value.

Examples

The following command sets the average packet rate flow to 100 packets per second.

\texttt{mcl000(config-qosrule)# avgpacketrate 100}

Related Commands

priority
qosrule
show qosrule
tokenbucketrate
droppolicy

Specifies the packet drop policy for the QoS rule.

Syntax

```
droppolicy {head | tail}
```

- **head**
 Specifies that new packets that arrive after the queue has reached its maximum length are allowed in the queue, and old information in the queue is replaced with the new information.

- **tail**
 Specifies that new packets that arrive after the queue has reached its maximum length are dropped.

Command Mode

Qosrule configuration

Default

The default for this command is **tail**.

Usage

This command specifies whether packets are dropped from the head or the tail of the QoS packet queue.

Examples

Use the following command to drop packets from the head end of the queue:

```
mc1000(config-qosrule)# droppolicy head
```

Related Commands

- qosrule
- show qosrule
dscp

Specifies the DiffServ codepoint class.

Syntax

```
dscp class
```

class Specifies the codepoint class. The class must be specified as in RFCs 2474, 2475, and 2597.

Command Mode

Qosrule configuration

Default

cs0 (best effort)

Usage

This command specifies the per-hop forwarding behavior for packets in the flow. It is recommended that you be familiar with RFCs 2475 and 2597 before changing these values.

Examples

The following command disables DSCP:

```
mcl000(config-qosrule)# dscp disabled
```

Related Commands

- `qosrule`
- `show qosrule`
dstip

Specifies the destination IP address for the QoS rule.

Syntax

```
dstip destination-ip-address
```

destination-ip-address Specifies the destination IP address. The address must be specified as *nnn.nnn.nnn.nnn*.

Command Mode

Qosrule configuration

Default

None

Usage

This command specifies the destination IP address for the QoS rule. The destination IP address, in conjunction with a destination subnet mask, are used as criteria for matching the QoS rule.

Examples

The following command sets the destination IP address:

```
mc1000(config-qosrule)# dstip 192.14.0.0
```

Related Commands

- **dstmask**
- **dstport**
- **qosrule**
- **show qosrule**
dstmask

Specifies the destination IP address netmask for the QoS rule.

Syntax

dstmask destination-netmask

destination-netmask Specifies the subnet mask for the destination IP address. The netmask must be specified as nnn.nnn.nnn.nnn.

Command Mode

Qosrule configuration

Default

None.

Usage

This command specifies the subnet mask for the destination IP address for the QoS rule. The destination IP address, in conjunction with a destination subnet mask, are used as criteria for matching the QoS rule.

Examples

The following command sets the destination netmask:

```
mc1000(config-qosrule)# dstmask 255.0.0.0
```

Related Commands

dstip
dstport
qosrule
show qosrule
dstport

Specifies the destination TCP or UDP port for the QoS rule.

Syntax

```
dstport destination-port
```

destination-port Specifies the destination TCP or UDP port. The port can be from 0 to 65535.

Command Mode

Qosrule configuration

Default

The default port is 0 (specifies any port).

Usage

This command specifies the destination TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).

The Meru Controller watches the traffic passing through it. When it sees packets from stations to servers on ports reserved for SIP or H.323 service, it tracks subsequent communication in that sequence and provisions the VoIP call with a level of service appropriate for a VoIP calls.

The port numbers watched are:

- 5060 for SIP service (UDP)
- 1720 for H.323 service (TCP)

These are the standard port numbers for these services. If your VoIP devices use these ports to communicate with their servers, you do not need to configure VoIP QoS rules on your system.

If your VoIP devices and servers are configured to use different ports, you will need to modify the QoS rules on the controller to match the ports your system uses.

Examples

The following command sets the destination port to 1200:

```
mc1000(config-qosrule)# dstport 1200
```

Related Commands

- `dstip`
- `dstmask`
- `qosrule`
- `show qosrule`
peakrate

Specifies the traffic specification peak rate for a QoS Codec rule.

Syntax

```plaintext
peakrate rate
```

- **rate**
 - Traffic peak rate. The valid value range is 0 to 1,000,000 bytes/second.

Command Mode

QoS Codec configuration

Default

The default traffic peak rate is 0.

Usage

This command specifies the traffic specification (Tspec) peak rate for a QoS Codec rule.

Examples

The following command sets the Tspec peak rate to 1000000:

```plaintext
mc1000(config-qoscodec)# peakrate 1000000
```

Related Commands

- `show qoscodec`
priority

Specifies the queue priority level for the QoS rule.

Syntax

```
priority priority
```

`priority` Specifies the number (0-8) that determines the best effort priority queue. The default is 0. The highest priority is 8.

Command Mode

Qosrule configuration

Default

The default priority level is 0.

Usage

This command specifies a priority level for the QoS rule. QoS is applied with reserved traffic being allocated the first portion of the AP packet transmittal total bandwidth, followed by each priority level (8 to 1), and finally by the best-effort (default) traffic class.

If you enable priority (specify a non-zero value), you cannot specify an average packet rate or token bucket rate.

Examples

The following command sets the priority level to 5:

```
mc1000(config-qosrule)# priority 5
```

Related Commands

- `avgpacketrate`
- `qosrule`
- `show qosrule`
- `tokenbucketrate`
qoscodec

Specifies a QoS Codec entry and enters QoS Codec configuration mode.

Syntax

```
qoscodec id codec qosprotocol qosproto tokenbucketrate tokenbucketrate maxdatagramsize maxdatagramsize minpolicedunit minpolicedunit samplerate samplerate

no qoscodec id
```
id

Unique numeric identifier for the QoS Codec rule. The valid value range is 0 through 6,000.

codec codec

The following are valid entries for `codec`:

- **1016** — 1016 Audio: Payload Type 1, Bit Rate 16 Kbps
- **default** — Contains the default TSpec/ RSpec for unknown codecs or codecs for which there is no entry in the codec translation table
- **dv14** — DV14 Audio: Payload Type 5, Bit Rate 32 Kbps
- **dv14.2** — DV14.2 Audio: Payload Type 6, Bit Rate 64 Kbps
- **g711a** — G711 Audio: Payload Type 8, G.711, A-law, Bit Rate 64 Kbps
- **g711u** — G711 Audio: Payload Type 0, G.711, U-law, Bit Rate 64 Kbps
- **g721** — G721 Audio: Payload Type 2, Bit Rate 32 Kbps
- **g722** — Audio: Payload Type 9, Bit Rate 64 Kbps, 7 KHz
- **g7221** — G7221 Audio: Payload Type *, Bit-Rate 24 Kbps, 16 KHz
- **g7221-32** — G7221 Audio: Payload Type *, Bit-Rate 32 Kbps, 16 KHz
- **g723.1** — G7231 Audio: Payload Type 4, G.723.1, Bit Rate 6.3 Kbps
- **g728** — G728 Audio: Payload Type 15, Bit Rate 16 Kbps
- **g729** — G729 Audio: Payload Type 16, Bit Rate 8 Kbps
- **g7red** — Proprietary MSN Codec Audio: Payload Type *
- **gsm** — GSM Audio: Payload Type 3, Bit Rate 13 Kbps
- **h261** — H.261 Video
- **h263** — H.263 Video
- **lpc** — IPC Audio: Payload Type 7, Bit Rate 2.4kbps
- **mpa** — MPA Audio: Payload Type 14, Bit Rate 32kbps
- **siren** — Proprietary MSN Audio: Payload Type *, Bit Rate 16 Kbps, 16 KHz
Command Mode

Global configuration

Default
None

Usage
This command creates a QoS Codec entry and enters QoS Codec configuration mode. As shipped, 22 codecs are provided, and each can be edited with this command, using the id number as the argument. Use the no form to delete an entry from the QoS Codec table. The supplied codecs entries can be viewed with show qoscodec, and are:

<table>
<thead>
<tr>
<th>ID</th>
<th>Codec</th>
<th>QoS Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>h263</td>
<td>sip</td>
</tr>
<tr>
<td>21</td>
<td>h261</td>
<td>sip</td>
</tr>
<tr>
<td>20</td>
<td>siren</td>
<td>sip</td>
</tr>
<tr>
<td>19</td>
<td>g729</td>
<td>sip</td>
</tr>
<tr>
<td>18</td>
<td>g7221-32</td>
<td>sip</td>
</tr>
<tr>
<td>17</td>
<td>g7221</td>
<td>sip</td>
</tr>
<tr>
<td>16</td>
<td>g711a</td>
<td>sip</td>
</tr>
<tr>
<td>15</td>
<td>g723.1</td>
<td>sip</td>
</tr>
<tr>
<td>14</td>
<td>gsm</td>
<td>sip</td>
</tr>
<tr>
<td>13</td>
<td>g711u</td>
<td>sip</td>
</tr>
<tr>
<td>12</td>
<td>default</td>
<td>sip</td>
</tr>
<tr>
<td>11</td>
<td>h263</td>
<td>h323</td>
</tr>
<tr>
<td>10</td>
<td>h261</td>
<td>h323</td>
</tr>
<tr>
<td>9</td>
<td>siren</td>
<td>h323</td>
</tr>
<tr>
<td>8</td>
<td>g729</td>
<td>h323</td>
</tr>
<tr>
<td>7</td>
<td>g7221-32</td>
<td>h323</td>
</tr>
<tr>
<td>6</td>
<td>g7221</td>
<td>h323</td>
</tr>
<tr>
<td>5</td>
<td>g711a</td>
<td>h323</td>
</tr>
<tr>
<td>4</td>
<td>g723.1</td>
<td>h323</td>
</tr>
<tr>
<td>3</td>
<td>gsm</td>
<td>h323</td>
</tr>
</tbody>
</table>

qosprotocol qosprotocol

Specifies the QoS protocol:
- **h323**—H.323 (used mainly by Microsoft NetMeeting)
- **none**—All other protocols
- **sip**—Session Initiation Protocol (SIP)

tokenbucketrate
tokenbucketrate

Token bucket rate. The valid value range is 0 to 1,000,000 bytes/second.

maxdatagramsize
maxdatagramsize

Maximum packet size. The valid value range is 0 to 1,500 bytes.

minpolicedunit
minpolicedunit

Minimum number of policed units. The valid value range is 0 to 1,500 bytes.

samplerate samplerate

Packet rate. The valid value range is 0 to 200 packets/second.
Examples

The following command creates a QoS Codec rule 4 that specifies a default codec, no QoS protocol, a token bucket rate of 3333 bytes/ps, a maximum datagram size of 4 bytes, a minimum policed unit of 45 bytes, and a sample rate of 34 packets per second:

```
mc1000(config)# qoscodec 4 codec default qosprotocol none
tenbucketrate 3333 maxdatagramsize 4 minpolicedunit 45
samplerate 34
mc1000(config-qoscodec)#
```

Related Commands

```
show qoscodec
```
qosrule

Creates a QoS rule and enters qosrule configuration mode.

Syntax

```
qosrule id netprotocol {6 | 17 | other} qosprotocol {h323 | none | sip}

no qosrule id
```

- `id` Specifies the ID for the QoS rule. The ID must be a unique number.
- `netprotocol {6 | 17 | other}` Specifies the flow protocol for the QoS rule. The protocol must be 6 (TCP), 17 (UDP), or `other`. `other` can be any valid protocol number such as 119 for the SRP protocol, used with Spectralink phones. [Full listing at: http://www.iana.org/assignments/protocol-numbers.]
- `qosprotocol {h323 | none | sip}` Specifies the QoS protocol for the rule. Typically, none is appropriate in most environments. If you are also using a QoS protocol detector, you must match the network protocol with the type of QoS protocol. Use the following network protocol and QoS protocol matches:
 - UDP: SIP
 - TCP: H.323

Command Mode

Global configuration

Default

None

Usage

Use this command to create a QoS rule and enter qosrule configuration mode. The controller is preconfigured to detect the bandwidth requirements for a SIP or H.323 call and make a bandwidth reservation. Once you specify the ID and the network and QoS protocol parameters, other parameters such as the port, average packet rate are automatically configured for the rule. Use the no form of the command to delete a QoS rule.

If you need to modify other of the QoS rule parameters, use the commands contained in the qosrule mode to fine tune those values.

You normally do not need to configure QoS rules in the controller unless you have special requirements in your configuration. For example:

- You want to drop packets coming from certain ports or IP addresses.
You want to configure the controller to give priority to traffic other than H.323 or SIP traffic.

You can configure rules to provide priority-based or reserved QoS. QoS is applied with reserved traffic being allocated the first portion of total bandwidth, followed by each priority level, and finally by the best-effort (default) traffic class. For priority-based QoS, you can specify one of eight levels of priority using the `priority` parameter in the rule. You can configure reserved QoS for new applications using the average packet rate and token bucket rate parameters together as the traffic specification (also called TSpec in IETF IntServ RFCs).

Examples

The following command creates rule 3 using the UDP and SIP as the network and QoS protocols, respectively:

```
mcl1000(config)# qosrule 3 netprotocol 17 qosprotocol sip
```

The following command shows the QoS rules that are configured:

```
mcl1000# show qosrule
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Dst IP</th>
<th>Dst Mask</th>
<th>DPort</th>
<th>Src IP</th>
<th>Src Mask</th>
<th>SPort</th>
<th>Prot</th>
<th>Qos</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1720</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>6</td>
<td>h323</td>
<td>capture</td>
</tr>
<tr>
<td>2</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1720</td>
<td>6</td>
<td>h323</td>
<td>capture</td>
</tr>
<tr>
<td>3</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>5060</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>17</td>
<td>sip</td>
<td>capture</td>
</tr>
<tr>
<td>4</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>5060</td>
<td>17</td>
<td>sip</td>
<td>capture</td>
</tr>
<tr>
<td>5</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>9191</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>17</td>
<td>none</td>
<td>capture</td>
</tr>
<tr>
<td>6</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>119</td>
<td>none</td>
<td>forward</td>
</tr>
<tr>
<td>7</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>5200</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>17</td>
<td>none</td>
<td>forward</td>
</tr>
<tr>
<td>8</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>5200</td>
<td>17</td>
<td>none</td>
<td>forward</td>
</tr>
</tbody>
</table>

The first two preconfigured QoS rules give priority to H.323 traffic sent to and from TCP port 1720 respectively. The next two QoS rules give priority to SIP traffic sent to and from UDP port 5060 respectively.

Related Commands

- action
- avgpacketrate
- droppolicy
- dstip
- dstmask
- dstport
- priority
srcip
srcmask
srcport
show qosrule
tokenbucketrate
trafficcontrol-enable
qosvars admission

Specifies QoS call admission policy.

Syntax

```
qosvars admission {admitall|pending|reject}
```

admitall

Specifies that all QoS flows are admitted to the QoS traffic class. If the aggregate reserved bandwidth exceeds the available bandwidth, degradation of the entire QoS traffic class results.

pending

Specifies that if no bandwidth is available to reserve, new QoS flows are moved to the best-effort traffic class. When enough bandwidth is released from other QoS flows, the flows that were placed in the best-effort traffic class are upgraded to the QoS traffic class.

reject

Specifies that if no bandwidth is available to reserve, requests for resources are rejected and not the flows themselves. QoS flows are permanently moved to the best-effort traffic class. If additional bandwidth is available at a later time, these QoS flows are not moved to the QoS traffic class.

Command Mode

Global configuration

Default

By default, admission control is set to **pending**

Usage

Bandwidth reservation is performed based on the SIP call signaling (codecs/ports specified in the SDP body), taking into account the amount of bandwidth available at the APs taking the call and consideration for other active, reserved QoS flows on neighboring APs. This is calculated in time basis, taking into account the actual data rate (1/2/5.5/11 Mbps) of the client in the call, since the number of calls supported vary depending on the data rate and distance of each client.

The selected keyword (**admitall**, **pending**, or **reject**) specifies what happens to a QoS flow (for example, a newly established voice call) that requests air resources that are not available at that time.

Examples

The following command changes the admission control policy to reject requests for resources, if bandwidth is not available:
`mc1000(config)# qosvars admission reject`

Related Commands

 show qosvars
qosvars bwscaling

Specifies bandwidth scaling for QoS flows.

Syntax

qosvars bwscaling value

value Specify a value from 1% to 100,000%.

Command Mode

Global configuration

Default

The default bandwidth scaling is set to 100%.

Usage

This command specifies how bandwidth is scaled. A value under 100% reduces the amount of resources that can be reserved, allowing resources for best-effort traffic in a fully loaded environment. Specify a value over 100% when using applications that overestimate the amount of resources they use and is best used to account for applications that use silence suppression or vary the amount of traffic being sent. For example, if you specify a value of 110%, the system acts as if there 10% more real bandwidth available.

Examples

The following command configures bandwidth scaling to 140%.

mc1000(config)# qosvars bwscaling 140

Related Commands

show qosvars
qosvars cac-deauth

Configures optional 802.11 de-authentication.

Syntax

qosvars cac-deauth {on | off}

Command Mode

Global configuration

Default

The default setting for this command is off.

Usage

This command controls the behaviour of the system when the originator of a call exceeds the available CAC (Call Admission Control) resources. When set to on, the system sends an 802.11 De-authentication frame to push the client to an alternate BSS. When set to off (default setting), the system sends a modified INVITE message to the SIP Server. When CAC is enabled, as the set call level threshold is neared for the AP or BSSID, the admin can configure actions to occur when the limit is reached, which can include one of the following actions:

- For generic SIP servers, send a 486_BusyHere message to reject the call.
- For some cases where needed, send a modified INVITE message to SIP server.
- Other cases where needed, send a modified INVITE or a 486_BusyHere message to reject the call, which contains the X-CallAdmission SIP extension header.

Examples

The following command enables the CAC De-authentication feature:

```
mc1000(config)# qosvars cac-deauth on
```

Related Commands

`show qosvars`
qosvars calls-per-ap

Configures maximum number of calls per AP.

Syntax

```
qosvars calls-per-ap max_calls
```

- `max_calls` Specifies the maximum number of simultaneous calls for APs. Valid values are from 0 to 256. By default, 0 is set, which allows no calls.

Command Mode

Global configuration

Default

The default setting for this command is 0.

Usage

This command sets a threshold for the maximum number of calls per AP. This command implements the Call Admission Control (CAC) feature, which ensures a consistent level of voice quality by setting a threshold for the number of calls per AP. As an AP nears the set threshold, CAC denies new SIP connections until enough bandwidth is available to effectively handle the resulting media stream.

When the call limit for the AP is exceeded, all new calls receive a 486_BusyHere response until the number of calls is less than the specified threshold. On handoff from one AP to another, if there are no resources available in the second AP, the call is classified as Pending/Best-effort until the needed resources are available.

Examples

The following command sets the maximum number of calls per AP to 12:

```
mc1000(config)# qosvars calls-per-ap 12
```

Related Commands

- `qosvars cac-deauth`
- `qosvars calls-per-bssid`
- `show qosvars`
- `show statistics call-admission-control`
qosvars calls-per-bssid

Configures maximum number of calls per BSSID.

Syntax

qosvars calls-per-bssid max_calls

max_calls Specifies the maximum number of simultaneous calls for BSSIDs. The allowable range of calls is from 0 to 1023. By default, 0 is set, which allows all calls.

Command Mode

Global configuration

Default

The default setting for this command is 0.

Usage

This command, with an argument other than the default (0), sets a threshold for the maximum number of calls per BSS. This command implements the Call Admission Control (CAC) feature, which ensures a consistent level of voice quality by setting a threshold for the number of calls per BSS. As a BSS nears the set threshold, CAC denies new SIP connections until enough bandwidth is available to effectively handle the resulting media stream.

When the call limit for the BSS is exceeded, all new calls receive a 486_BusyHere response until the number of calls is under the specified threshold. By default, max_calls is set to 0, meaning there is no limit for that BSSID and the per-AP limit applies. For CAC, both the qosvars calls-per-ap and the qosvars calls-per-bssid are validated.

Examples

The following command sets the maximum number of calls to 14:

mc1000(config)# qosvars calls-per-bssid 14

Related Commands

qosvars cac-deauth
qosvars calls-per-ap
show qosvars
show statistics call-admission-control
qosvars drop-policy

Specifies the QoS global drop policy.

Syntax

```
qosvars drop-policy {head|tail}
```

head

Specifies that if new packets arrive after the queue has reached its maximum length, they are allowed in the queue, and old information in the queue is replaced with the new information. Select this option for applications that use constant-rate real-time flows, such as voice applications, where minimizing delay is generally more important than reducing packet loss.

tail

Specifies that if new packets arrive after the queue has reached its maximum length, they are dropped. Select this option if you are using applications with built-in flow control.

Command Mode

Global configuration

Default

By default, the drop policy is set to **tail**.

Usage

This command specifies whether packets are dropped from the head or the tail of the QoS packet queue if packets overflow the queue.

Examples

The following command sets the drop policy to **head**:

```
mc1000(config)# qosvars drop-policy head
```

Related Commands

- show qosvars
qosvars enable

Enables QoS.

Syntax
qosvars enable

Command Mode
Global configuration

Default
QoS is enabled by default.

Usage
This command enables QoS settings globally.

Examples
The following command enables QoS settings globally:

default(config)# qosvars enable
default(config)#

Related Commands
qosvars admission
qosvars bwscaling
qosvars cac-deauth
qosvars calls-per-ap
qosvars calls-per-bssid
qosvars drop-policy
qosvars load-balance-overflow
qosvars max-stations-per-ap
qosvars max-stations-per-bssid
qosvars no enable
qosvars tcpttl
qosvars ttl
qosvars udpttl
show qosvars
qosvars load-balance-overflow

Enables or disables client load balancing across APs and BSSIDs.

Syntax

```plaintext
qosvars load-balance-overflow {on | off}
```

Command Mode

Global configuration

Default

The default setting for this command is off (disabled).

Usage

This command is used to enable or disable client load balancing across BSSIDs and APs, ensuring a level of QoS for client call sessions. This command is used in conjunction with the commands `qosvars max-stations-per-ap` and `qosvars max-stations-per-bssid`. When the maximum number of stations is reached, new call associations are distributed among APs and BSSIDs in a round-robin fashion, evening out the distribution if this command is set to `on`.

Examples

The following command enables client load balancing overflow protection:

```plaintext
mc1000(config)# qosvars load-balance-overflow on
```

Related Commands

- `qosvars max-stations-per-ap`
- `qosvars max-stations-per-bssid`
- `show qosvars`
qosvars max-stations-per-ap

Configures client load balancing across APs.

Syntax

```plaintext
qosvars max-stations-per-ap max_stations
```

max_stations Specifies the maximum number of clients (stations) that can associate with an AP. By default, this is set to 128.

Command Mode

Global configuration

Default

The default setting for this command is 128.

Usage

This command is used to configure client load balancing across APs, ensuring a level of QoS for client call sessions. This command sets the maximum number of stations that can be assigned to an AP. When the maximum number of stations per AP is reached, new call associations can be distributed among APs and BSSIDs in a round-robin fashion, evening out the distribution if the *qosvars load-balance overflow* command is set to *on*.

Examples

The following command sets the maximum number of stations per AP to 15:

```plaintext
mcl000(config)# qosvars max-stations-per-ap 15
```

Related Commands

- *qosvars load-balance-overflow*
- *qosvars max-stations-per-bssid*
- *show qosvars*
qosvars max-stations-per-bssid

Configures client load balancing across BSSIDs.

Syntax

qosvars max-stations-per-bssid max_stations

max_stations Specifies the maximum number of clients (stations) that can associate with a BSSID. By default, this is set to 0. A maximum of 1023 stations can be set.

Command Mode

Global configuration

Default

The default setting for this command is 0, which basically disables client load balancing.

Usage

This command is used to configure client load balancing across BSSIDs, ensuring a level of QoS for client call sessions. This command sets the maximum number of stations that can be assigned to an BSSID. When the maximum number of stations per BSSID is reached, new call associations can be distributed among BSSIDs in a round-robin fashion, evening out the distribution if the qosvars load-balance overflow command is set to on.

If you want to perform client load balancing across VirtualCells, then it is recommended that you set the value of max-stations-per-bssid to be the number of devices in the network divided by the number of VirtualCells (or BSSIDs). If you expect that at some times there may be additional devices beyond that joining the network, you should also set qosvars load-balance overflow to on so that once the maximum number of stations limit is reached, round-robin will be performed to balance new client assignments.

Examples

The following command sets the maximum number of stations per BSSID to 30:

mc1000(config)# qosvars max-stations-per-bssid 30

Related Commands

qosvars max-stations-per-ap
qosvars load-balance-overflow
show qosvars
qosvars no enable

Disables QoS.

Syntax

```
qosvars no enable
```

Command Mode

Global configuration

Default

None

Usage

This command disables the global QoS variables.

Examples

The following command disables QoS:

```
mc1000(config)# qosvars no enable
mc1000(config)#
```

Related Commands

- `qosvars enable`
- `show qosvars`
qosvars sip-idle-timeout

Configures SIP call timeout interval.

Syntax

```
qosvars sip-idle-timeout seconds
```

seconds Specifies the maximum amount of time in seconds a call can idle. The *interval* can be from 5 to 3600, with 150 seconds being the default.

Command Mode

Global configuration

Default

The default setting for this command is 150 seconds.

Usage

This command is used to configure the amount of time a call can idle before it must be answered (the setting is a part of CAC). The valid range is from 5 to 3600 seconds, with the default setting at 120 seconds.

Examples

The following command sets the maximum idle interval to 1000 seconds:

```
mcl000(config)# qosvars sip-idle-timeout 1000
```

Related Commands

- `show qosvars`
qosvars station-assign-age

Configures number of seconds allowed for station association.

Syntax

qosvars stations-assign-age seconds

seconds Specifies the maximum amount of time in seconds a station is allowed to associate. The interval can be from 5 to 2000, with 30 seconds being the default.

Command Mode

Global configuration

Default

The default setting for this command is 30 seconds.

Usage

This command is used to configure the amount of time an AP caches a client's state while waiting for a Probe or Authenticate request/response sequence with a BSS to complete. The default 30 seconds is adequate for most sites and should not be changed unless recommended by Meru Networks Customer Support.

Examples

The following command sets the maximum association interval to 10 seconds:

mcl000(config)# qosvars stations-assign-age 10

Related Commands

show qosvars
qosvars tcpttl

Specifies the TCP QoS time to live (TTL) value.

Syntax

```
qosvars tcpttl value
```

value The value can be between 0 to 65,535 seconds.

Command Mode

Global configuration

Default

The default TCP TTL is 0 seconds.

Usage

This command specifies the amount of time in seconds the QoS TCP flow can be inactive before the flow is moved to the best-effort class.

Examples

The following command sets the QoS TCP flow TTL to 65535:

```
controller(config)# qosvars tcpttl 65535
```

Related Commands

`show qosvars`
qosvars ttl

Specifies the default QoS time to live (TTL) value.

Syntax

```
qosvars ttl value
```

- **value** The value can be between 0 to 65,535 seconds.

Command Mode

Global configuration

Default

The default time-to-live value is 0.

Usage

This command specifies the amount of time that the system recognizes and holds resources for an ongoing flow (for example, a voice call) without seeing any packet activity.

As an example, if the default time-to-live value is set to 300 seconds, a call can continue for 5 minutes without any packets being exchanged before the resources for it are relinquished. Applications that use silence suppression might require higher time-to-live values.

Examples

The following command sets the default QoS TTL value to 300 seconds (5 minutes):

```
controller(config)# qosvars ttl 300
```

Related Commands

- `show qosvars`
qosvars udpttl

Specifies the UDP QoS time to live (TTL) value.

Syntax

```
qosvars udpttl value
```

value The value can be between 0 to 65,535 seconds.

Command Mode

Global configuration

Default

The default setting for this command is 0.

Usage

This command specifies the amount of time in seconds the QoS UDP flow can be inactive before the flow is moved to the best-effort class.

Examples

The following command sets the QoS UDP flow TTL to 65535:

```
controller(config)# qosvars udpttl 65535
```

Related Commands

`show qosvars`
rspecrate

Specifies the reservation spec rate for a QoS Codec rule.

Syntax

```plaintext
rspecrate rate
```

<table>
<thead>
<tr>
<th>Syntax</th>
<th>rspecrate rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rate</code></td>
<td>Specifies the reservation spec rate. From 0 to 1,000,000 bytes/second.</td>
</tr>
</tbody>
</table>

Command Mode

QoS Codec configuration

Default

The default reservation spec rate is 0 bytes/second.

Usage

This command specifies the reservation spec (Rspec) rate for a QoS Codec rule.

Examples

The following command sets the Rspec rate to 1,000,000 bytes/second:

```plaintext
mc1000(config-qoscodec)# rspecrate 1000000
```

Related Commands

`show qoscodec`
rspecslack

Specifies the reservation spec slack for a QoS Codec rule.

Syntax

```
rspecslack slack
```

slack Specifies the reservation spec slack. From 0 to 1,000,000 bytes/second.

Command Mode

QoS Codec configuration

Default

The default reservation spec slack is 0 bytes/second.

Usage

This command specifies the reservation spec (Rspec) slack for a QoS Codec rule.

Examples

The following command sets the Rspec slack to 1000000:

```
mc1000(config-qoscodec)# rspecslack 1000000
```

Related Commands

```
show qoscodec
```
srcip

Specifies the source IP address for the QoS rule.

Syntax
```
srcip source-ip-address
```

- **source-ip-address**: Specifies the source IP address. The address must be specified as `nnn.nnn.nnn.nnn`.

Command Mode
Qosrule configuration

Default
None

Usage
This command specifies the source IP address for the QoS rule. The source IP address, in conjunction with a source subnet mask, are used as criteria for matching the QoS rule.

Examples
The following command sets the source IP address:
```
mc1000(config-qosrule)# srcip 192.20.0.0
```

Related Commands
- `show qosrule`
- `srcmask`
- `srcport`
- `qosrule`
srcmask

Specifies the source IP address netmask for the QoS rule.

Syntax

```
srcmask source-netmask
```

source-netmask Specifies the subnet mask for the source IP address. The netmask must be specified as *nnn.nnn.nnn.nnn*.

Command Mode

Qosrule configuration

Default

None.

Usage

This command specifies the subnet mask for the source IP address for the QoS rule. The source IP address, in conjunction with a source subnet mask, are used as criteria for matching the QoS rule.

Examples

The following command sets the source netmask:

```
mcl000(config-qosrule)# srcmask 255.0.0.0
```

Related Commands

srcip
srcport
qosrule
show qosrule
srcport

Specifies the source TCP or UDP port for the QoS rule.

Syntax

```
srcport source-port
```

source-port Specifies the source TCP or UDP port. The port can be from 0 to 65535.

Command Mode

Qosrule configuration

Default

The default port is 0 (specifies any port).

Usage

This command specifies the source TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).

The Meru Controller watches the traffic passing through it. When it sees packets from stations to servers on ports reserved for SIP or H.323 service, it tracks subsequent communication in that sequence and provisions the VoIP call with a level of service appropriate for a VoIP calls.

The port numbers watched are:

- 5060 for SIP service (UDP)
- 1720 for H.323 service (TCP)

These are the standard port numbers for these services. If your VoIP devices use these ports to communicate with their servers, you do not need to configure VoIP QoS rules on your system.

If your VoIP devices and servers are configured to use different ports, you will need to modify the QoS rules on the controller to match the ports your system uses.

Examples

The following command sets the source port to 1200:

```
mc1000(config-qosrule)# srcport 1200
```

Related Commands

srcip
srcmask
qosrule
show qosrule
show phones

Shows all registered phones.

Syntax

```
show phones
```

Command Mode

Privileged EXEC

Default

None

Usage

This command shows all phones on the system that have been registered. Information includes the MAC address and IP address of the client phone, the name of the AP it is associated with, the type of phone, the username associated with the phone, and the SIP server handling the call.

Examples

The following command shows all phones that have registered with the system:

```
mc1000# show phones
```

<table>
<thead>
<tr>
<th>MAC</th>
<th>IP</th>
<th>AP ID</th>
<th>AP Name</th>
<th>Type</th>
<th>Username</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0f:86:12:1d:7c</td>
<td>10.0.220.119</td>
<td>1</td>
<td>AP-1</td>
<td>sip</td>
<td>5381</td>
<td></td>
</tr>
<tr>
<td>10.6.6.103</td>
<td>10.6.6.103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phone Table(1 entry)

```
mc1000#
```

Related Commands

```
show phone-calls
```
show phone-calls

Shows all active calls.

Syntax

```
show phone-calls
```

Command Mode

User EXEC

Default

None

Usage

This command shows all active calls on the system.

Examples

The following command shows all active calls on the system:

```
mc1000# show phone-calls
```

<table>
<thead>
<tr>
<th>From MAC</th>
<th>From IP</th>
<th>From AP</th>
<th>From AP Name</th>
<th>From Username</th>
<th>To Username</th>
<th>To Flow</th>
<th>Pending</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0f:86:12:1d:7c</td>
<td>10.0.220.119</td>
<td>1</td>
<td>AP-1</td>
<td>5381</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>00:00:00:00:00:00</td>
<td>10.0.220.241</td>
<td>0</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>off</td>
<td>sip</td>
<td>connected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phone Call Table(1 entry)

Related Commands

```
show phones
```
show qoscodec

Displays a summary of the QoS Codec rules.

Syntax

```
show qoscodec [id]
```

id Optional. Specifies the number of the QoS Codec rule.

Command Mode

User EXEC

Default

The default for this command is to show all configured QoS Codec rules.

Usage

This command displays all QoS Codec rules, or displays a specific QoS Codec rule with the optional argument.

The detailed codec rule provides the following information:

- **ID** Unique numeric identifier for the QoS Codec rule.
- **Codec** Specifies the Codec type.
- **Token Bucket Rate** Specifies the token bucket rate.
- **Token Bucket Size** Specifies the size of the token bucket.
- **Peak Rate** Specifies the traffic specification peak rate.
- **Maximum Packet Size** Specifies the maximum packet size.
- **Minimum Policed Unit** Specifies the minimum policed unit size.
- **Reservation Rate** Specifies the reservation rate.
- **Reservation Slack** Specifies the reservation slack.
- **Packet Rate** Specifies the flow packet rate.
- **QoS Protocol** Specifies the QoS protocol:
 - SIP
 - H.323
Examples

The following command displays all configured QoS Codec rules:

```
mc1000> show qoscodec
ID   Codec       Qos Protocol
22   h263        sip
21   h261        sip
20   siren       sip
19   g729        sip
18   g7221-32    sip
17   g7221       sip
16   g711a       sip
15   g723.1      sip
14   gsm         sip
13   g711u       sip
12   default     sip
11   h263        h323
10   h261        h323
9    siren       h323
8    g729        h323
7    g7221-32    h323
6    g7221       h323
5    g711a       h323
4    g723.1      h323
3    gsm         h323
2    g711u       h323
1    default     h323
```

QoS Codec Rules(22)

The following command displays QoS Codec rule 4:

```
mc1000> show qoscodec 4
QoS Codec Rules
ID : 4
Codec : g723.1
Token Bucket Rate (0-1,000,000 bytes/second) : 2100
Token Bucket Size (0-16,000 bytes) : 128
Peak Rate (0-1,000,000 bytes/second) : 2500
Maximum Packet Size (0-1,500 bytes) : 64
Minimum Policed Unit (0-1,500 bytes) : 0
Reservation Rate (0-1,000,000 bytes/second) : 2100
Reservation Slack (0-1,000,000 microseconds) : 10000
Packet Rate (0-200 packets/second) : 33
QoS Protocol : h323
```

Related Commands

peakrate
qoscodec
rspecrate
rspecslack
tokenbucketsize
show qosflows

Displays all QoS flows.

Syntax

show qosflows

Command Mode

User EXEC

Default

None

Usage

Use the **show qosflows** command to display all active and pending QoS flows.

Examples

The following command displays QoS flows:

```
mc1000# show qosflows
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Source IP</th>
<th>Source Port</th>
<th>Destination IP</th>
<th>Dest Port</th>
<th>Prot</th>
<th>Token Average</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.172</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.161</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.177</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.157</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.180</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.150</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.178</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10.6.6.103</td>
<td>0</td>
<td>192.168.10.143</td>
<td>5060</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mc1000#

Table 6 describes fields in show qosflows output.

Table 6: Output for show qosflows

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique numeric identifier for the QoS flow.</td>
</tr>
<tr>
<td>Source IP</td>
<td>Source IP address, in conjunction with a destination subnet mask, used as criteria for matching the QoS rule.</td>
</tr>
<tr>
<td>Source Port</td>
<td>Source TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).</td>
</tr>
<tr>
<td>Destination IP</td>
<td>Destination IP address, in conjunction with a destination subnet mask, used as criteria for matching the QoS rule.</td>
</tr>
</tbody>
</table>
Table 6: Output for show qosflows

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Port</td>
<td>Destination TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).</td>
</tr>
<tr>
<td>Prot</td>
<td>Network protocol: Specifies whether the flow is TCP (6) or UDP (17) or other.</td>
</tr>
<tr>
<td>Token BRate</td>
<td>Token bucket rate (bytes/second).</td>
</tr>
<tr>
<td>Average BRate</td>
<td>Average bucket rate (bytes/second).</td>
</tr>
<tr>
<td>Status</td>
<td>Reservation status.</td>
</tr>
</tbody>
</table>
show qosrule

Displays the QoS rules that are configured for the system.

Syntax

```
show qosrule [rule]
```

- **rule**: Optional. Specifies the ID of a QoS rule.

Command Mode

User EXEC

Default

Shows all QoS rules that are configured.

Usage

This command displays all QoS rules, or displays a specific QoS rule with the optional argument. When a rule is specified with the command, the additional information about the priority of the rule and traffic control setting is included.

The displays provides the following information:

- **ID**: Unique numeric identifier for the QoS rule.
- **Destination IP**: This IP address, in conjunction with a destination subnet mask, are used as criteria for matching the QoS rule.
- **Destination Netmask**: The subnet mask for the destination IP address.
- **Destination Port**: The destination TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).
- **Source IP**: The source IP address, in conjunction with the source subnet mask, are used as criteria for matching the QoS rule.
- **Source Netmask**: Subnet mask of the source IP address.
- **Source Port**: Source TCP or UDP port used as criteria for matching the QoS rule (zero specifies any port).
- **Network Protocol**: Shows whether the flow is TCP (6) or UDP (17) or other. If you are using a QoS protocol detector, the network protocol matches the type of QoS protocol:
 - UDP: SIP
 - TCP: H.323
Examples

The following command displays all QoS rules:

```
mc1000> show qosrule
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Dst IP</th>
<th>Dst Mask</th>
<th>DPort</th>
<th>Src IP</th>
<th>Src Mask</th>
<th>SPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1720</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1720</td>
</tr>
<tr>
<td>3</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>5060</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

QoS Protocol

The QoS protocol can be:

- SIP
- H.323
- Other

Average Packet Rate

Averaged flow packet rate.

Action

Specifies what the rule does with packets:

- Forward: A flow is given an explicit resource request, bypassing the QoS protocol detector and regardless of whether a QoS protocol was specified.
- Capture: The system, using a QoS protocol detector, analyzes the flow for its resource requirements.
- Drop: The flow is dropped.

Drop Policy

Identifies what happens to packets that arrive when the queue is full:

- Head: New packets that arrive after the queue has reached its maximum length are allowed in the queue, and old information in the queue is replaced with the new information.
- Tail: New packets that arrive after the queue has reached its maximum length are dropped.

Token Bucket Rate

Specifies the Token Bucket Rate (bytes/second).

Priority

Specifies the priority level assigned to the queue.

Traffic Control

Specifies whether traffic control is being enforced. Traffic control can be:

- On
- Off

DiffServ Codepoint

Identifies the DiffServ setting in use, or DiffServ Disabled if no setting is in use.
QoS Rules(10)

The following command displays QoS rule 1:

```
mcl000> show qosrule 1
```

QoS Rules

```
ID : 1
Destination IP : 0.0.0.0
Destination Netmask : 0.0.0.0
Destination Port : 1720
Source IP : 0.0.0.0
Source Netmask : 0.0.0.0
Source Port : 0
Network Protocol : 6
QoS Protocol : h323
Average Packet Rate : 0
Action : capture
Drop Policy : head
Token Bucket Rate : 0
Priority : 0
Traffic Control : off
DiffServ Codepoint : cs0
```

Related Commands

- avgpacketrate
- dstip
- dstmask
- dstport
- droppolicy
- priority
- qosrule
- srcip
- srcmask
- srcport
- tokenbucketrate
- trafficcontrol-enable
show qosstats

Displays QoS statistics.

Syntax

\texttt{show qosstats}

Command Mode

User EXEC

Default

None

Usage

Displays the following QoS global statistics:

- H.323, SIP and total session counts
- H.323, SIP and total rejected counts
- H.323, SIP and total pending counts
- QoS active flow count
- QoS pending flow count

Examples

\texttt{mc1000> show qosstats}

Global Quality-of-Service Statistics

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Count</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Session Count</td>
<td>0</td>
</tr>
<tr>
<td>SIP Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Rejected Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Rejected H.323 Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Rejected SIP Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Pending Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Pending H.323 Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Pending SIP Session Count</td>
<td>0</td>
</tr>
<tr>
<td>Active Flows</td>
<td>0</td>
</tr>
<tr>
<td>Pending Flows</td>
<td>0</td>
</tr>
</tbody>
</table>

The Active Flows and Pending Flows include the H.323/SIP flows as well as any flow configured in the QoS rules.
show qosvars

Displays QoS global parameters.

Syntax

```
show qosvars
```

Command Mode

User EXEC mode

Default

None

Usage

This command shows the QoS global parameter settings. Use the `qosvars` commands in the Related Commands section to configure settings for these parameters.

Examples

The following command shows the default settings for the QoS parameters:

```
mcl1000> show qosvars
```

Global Quality-of-Service Parameters

- On/Off: on
- Admission Control: admitall
- Drop Policy: head
- Default Time-to-live (seconds): 0
- UDP Time-to-live (seconds): 0
- TCP Time-to-live (seconds): 0
- Bandwidth Scaling (percent): 100
- Intercell Periodicity (ms): 30
- Maximum Calls Per AP: 0
- Maximum Stations Per AP: 128
- Maximum Stations Per BSSID: 0
- Load Balance Overflow: off
- Maximum Calls Per BSSID: 0
- CAC Deauth: off

Related Commands

- `qosvars admission`
- `qosvars bwscaling`
- `qosvars cac-deauth`
- `qosvars calls-per-ap`
- `qosvars calls-per-bssid`
- `qosvars drop-policy`
- `qosvars enable`
- `qosvars load-balance-overflow`
qosvars max-stations-per-ap
qosvars max-stations-per-bssid
qosvars no enable
qosvars tcpttl
qosvars ttl
qosvars udpttl
show statistics call-admission-control

Displays Call Admission Control (CAC) statistics.

Syntax

```plaintext
show statistics call-admission-control {ap | bss}
```

Command Mode

User EXEC mode

Default

None

Usage

This command shows the CAC statistics per AP or BSS. Specifically for either the AP or BSS, it shows the current number of active calls as well as the cumulative number of calls that have been rejected as a result of reaching the Maximum Number of Calls setting. The cumulative number of rejected calls per BSS and AP are reset when the controller reboots and the AP reboots, respectively.

Use the `qosvars` commands in the Related Commands section to configure settings for these parameters.

Examples

The following command shows the CAC statistics for APs:

```plaintext
mc1000> show statistics call-admission-control ap

AP ID Current Calls Cumulative Rejected Calls
1 0 0

Call Admission Control AP Statistics(1 entry)
```

The following command shows the CAC statistics for BSS:

```plaintext
mc1000> show statistics call-admission-control bss

BSSID Current Calls Cumulative Rejected Calls
00:12:f2:30:97:49 0 0
00:12:f2:4e:9b:ce 0 0
00:12:f2:de:ec:6f 0 0

Call Admission Control BSS Statistics(3 entries)
```

Related Commands

- `qosvars calls-per-ap`
- `qosvars calls-per-bssid`
tokenbucketrate

Specifies the token bucket rate for the QoS rule.

Syntax

```
tokenbucketrate tokenbucketrate
```

tokenbucketrate Specifies the token bucket rate. The rate can be from 0 to 1,000,000 bytes per second. The default is 0.

Command Mode

Qosrule configuration

Default

The default token bucket rate is 0.

Limitations

This command is not supported on the AP150 or RS4000.

Usage

This command specifies the rate at which tokens are placed into an imaginary token bucket. Each flow has its own bucket, to which tokens are added at a fixed rate. To send a packet, the system must remove the number of tokens equal to the size of the packet from the bucket. If there are not enough tokens, the system waits until enough tokens are in the bucket.

If priority is enabled, you cannot specify a token bucket rate.

Examples

The following command sets the token bucket rate to 1,000,000:

```
mcl000(config-qosrule)# tokenbucketrate 1000000
```

Related Commands

- priority
- qosrule
- show qosrule
- tokenbucketsize
tokenbucketsize

Specifies the token bucket size.

Syntax

`tokenbucketsize size`

`size` Specifies the token bucket size from 0 to 16,000 bytes.

Command Mode

QoS Codec configuration

Default

The default token bucket size is 8 bytes.

Usage

This command specifies the size of the token bucket.

Examples

The following command sets the token bucket size to 10,000 bytes.

```
mcl000(config-qoscodec)# tokenbucketsize 10000
```

Related Commands

`qoscodec`
`tokenbucketrate`
`show qoscodec`
trafficcontrol-enable

Enables traffic control policy for the QoS rule. The no trafficcontrol command disables traffic control policy.

Syntax

- trafficcontrol-enable
- no trafficcontrol

Command Mode

Qosrule configuration

Default

The default is traffic control disabled.

Usage

Use this command to enable traffic control. Enabling traffic control restricts the flow (explicit, detected, and best-effort) to the rate you specified with the avgpacketrate command. Packets above that rate are dropped.

Examples

The following first enables traffic control, followed by the command to disable traffic control:

```
mc1000(config-qosrule)# trafficcontrol-enable
mc1000(config-qosrule)# no trafficcontrol
```

Related Commands

- avgpacketrate
- qosrule
- show qosrule
Chapter 13
SNMP Commands

The commands contained in this chapter configure and show the system SNMP settings:

- `reload snmp`
- `show snmp-community`
- `show snmp-trap`
- `snmp-server community`
- `snmp-server contact`
- `snmp-server description`
- `snmp-server location`
- `snmp-server trap`
reload snmp

Restarts the SNMP process.

Syntax

```
reload-snmp
```

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to reload the SNMP process. The command can be used, for example, when SNMP does not respond to incoming SNMP packets.

Examples

```
default# reload-snmp
```
show snmp-community

Displays the IP address and privileges in this community.

Syntax

`show snmp-community`

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to display information about the SNMP community, including IP address and read/write privileges.

Examples

```
default# show snmp-community

SNMP Community                  Client IP       Privilege
public                          0.0.0.0         read-only

SNMP Community Management(1 entry)
```

Related Commands

`snmp-server community`
show snmp-trap

Shows the SNMP trap community.

Syntax

```
show snmp-trap
```

Command Mode

Privileged EXEC

Default

None

Usage

Use this command to view the IP address(es) in the trap community.

Examples

```
mc1000# show snmp-trap
SNMP Trap Management

<table>
<thead>
<tr>
<th>Trap Community</th>
<th>Destination IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>10.10.1.1</td>
</tr>
</tbody>
</table>

SNMP Trap Management (1 entry)
```

```
mc1000#
```

Related Commands

`snmp-server trap`
snmp-server community

Configures an SNMP community.

Syntax

```
snmp-server community community-string client_IP_address {ro | rw}
no snmp-server community {public {client_IP_address | 0.0.0.0} | community-string }
```

- **community-string**: Text string that can be up to 32 alphanumeric characters long. Do not use spaces or special characters.
- **client-ip-address**: IP address associated with the SNMP read/write community. To specify a wildcard and allow all servers access, use 0.0.0.0.
- **ro | rw**: Type `ro` to allow read-only access to the MIB, or type `rw` to allow read-write access to the MIB.

Command Mode

Global configuration

Default

None

Usage

The SNMP community acts as a password to authenticate messages sent between the SNMP server and SNMP client. The SNMP community string is transmitted in clear text. Use the `no` form of the command to delete a community entry by client IP address or all servers (0.0.0.0).

Examples

The following command configures a read-only community, using the string `commstring1` as password, and allowing only the server with an IP address of 10.3.4.5:

```
mc1000(config)# snmp-server community commstring1 10.3.4.5 ro
mc1000(config)#
```

Related Commands

`show snmp-community`
snmp-server contact

Configures the contact person for the controller.

Syntax

```
snmp-server contact contact
```

| `contact` | Contact person from 1 to 255 characters. |

Command Mode

Global configuration

Default

None

Usage

Use this command to identify the contact person for the controller.

Examples

```
mc1000(config)# snmp-server contact Joe
mc1000(config)#
```

Related Commands

- `snmp-server description`
- `snmp-server location`
snmp-server description

Description of the controller.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>snmp-server description descr</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>descr</code></td>
<td>Description of the SNMP server from 1 to 255 characters.</td>
</tr>
</tbody>
</table>

Command Mode

Global configuration

Default

None

Usage

Use this command to give the controller a description.

Examples

```
mc1000(config)# snmp-server description corp_manager
mc1000(config)#
```

Related Commands

- snmp-server location
- snmp-server contact
snmp-server location

Configures a description location for the controller.

Syntax

```
snmp-server location location
```

location Text string that describes the location of the controller; from 1 to 255 characters.

Command Mode

Global configuration

Default

None

Usage

Use this command to describe the controller’s location.

Examples

```
mc1000(config)# snmp-server location san_jose_california
mc1000(config)#
```

Related Commands

- `snmp-server contact`
- `snmp-server description`
snmp-server trap

Configures an SNMP trap community.

Syntax

```
snmp-server trap community-string client-ip-address
```

- **community-string**
 Name of the SNMP community. The name can be up to 32 alphanumeric characters long. Do not include spaces or special characters in the name. The SNMP community acts as a password to authenticate messages sent between the SNMP server and SNMP client.

- **client-ip-address**
 IP address of the SNMP trap receiver that is listening for SNMP traps generated by the controller. To disable this feature, and allow all servers, use 0.0.0.0.

Command Mode

Global configuration

Default

None

Usage

Use the `snmp-server trap` command to create an SNMP trap community. You specify the SNMP trap receiver (using the `client-ip-address`) that listens for SNMP traps generated by the controller and the SNMP community. The SNMP community is transmitted in clear text.

Use the `no` form of the command to delete a snmp server trap community entry.

Examples

The following command configures an SNMP trap community using `commstring1` as the community string and specifying `10.3.4.5` as the trap receiver:

```
mc1000(config)# snmp-server trap commstring1 10.3.4.5
mc1000(config)#
```

Related Commands

- `show snmp-community`
The commands contained in this chapter show information about station (client) connections:

- no station
- show ap-assigned
- show dot11 associations
- show dot11 statistics client-traffic
- show station
- show statistics station-per-ap
- show statistics top10-station-problem
- show statistics top10-station-talker
- show topostaap
- show topostation
no station

Deauths (deletes) the associated station from an access point.

Syntax

`no station [MAC-address]`

Command Mode

Configuration mode

Default

None

Usage

Deletes an associated station from its access point by sending a de-auth message to the station, forcing it off the ESS. This command is helpful for debugging connectivity issues.

Most likely the client will associate again. To permanently remove a client from associating, use the MAC Filtering commands, as described in Chapter 11, “MAC Filtering Commands.”

Examples

The following command shows station information for access points:

```
mc1000# no station 00:40:96:a3:b2:95
```

Related Commands

`show station`

`access-list deny`
show ap-assigned

Displays assigned station information for one or more access points.

Syntax

`show ap-assigned [MAC-address]`

Command Mode

EXEC

Default

None

Usage

Displays station information for access points, including ID, MAC address, ESSID, etc. Executing the command without an argument presents a list of MAC addresses. Executing the command with the optional MAC address arguments presents detailed station information for that station.

Examples

The following command shows station information for access points:

```
mcl000# show ap-assigned
Assigned Stations(4 entries)
AP ID Client MAC    Type     SSID     State   Encrypt Pkts Rx  Pkts Tx  Last Prev  Curr RF Band
AP Name
2     00:02:6f:20:9a:00 STATION mwf-wpapsk                       ASSOCIATED     TKIP    34
19       00d:00h:02m:01s  188   188   802.11a  #2-2F-Sw-208
2     00:02:6f:20:9a:01 STATION mwf-wpapsk                       ASSOCIATED     TKIP    34
19       00d:00h:02m:01s  188   188   802.11a  #2-2F-Sw-208
2     00:02:6f:20:9a:02 STATION mwf-wpapsk                       ASSOCIATED     TKIP    35
17       00d:00h:02m:01s  188   188   802.11a  #2-2F-Sw-208
2     00:02:6f:20:9a:03 STATION mwf-wpapsk                       ASSOCIATED     TKIP    34
17       00d:00h:02m:01s  188   188   802.11a  #2-2F-Sw-208
```

The following command show the station information for the specified MAC address:

```
meru-wifi# show ap-assigned 00:40:96:a3:b2:95
Assigned Stations

AP ID    : 3
Client MAC : 00:40:96:a3:b2:95
Type     : STATION
ESSID    : mwf1xpeap
Association State : ASSOCIATED
Key Type  : none
Packets Received : 555
```
Packets Sent : 304
Last Activity : 0d:0h:0m:1s
Previous RSSI : 36
Current RSSI : 30
AP Name : QA
AP ID : 7
Client MAC : 00:40:96:a3:b2:95
Type : STATION
ESSID :
Association State : PROBING
Key Type : none
Packets Received : 70
Packets Sent : 0
Last Activity : 0d:0h:2m:30s
Previous RSSI : 0
Current RSSI : 0
AP Name : MKTG
AP ID : 10
Client MAC : 00:40:96:a3:b2:95
Type : STATION
ESSID :
Association State : PROBING
Key Type : none
Packets Received : 380
Packets Sent : 19
Last Activity : 0d:0h:0m:31s
Previous RSSI : 13
Current RSSI : 13
AP Name : AP-10

Related Commands
show dot11 associations

Displays the stations seen by the system.

Syntax

`show dot11 associations`

Command Mode

EXEC

Default

None

Usage

Displays various station information, including MAC Address, availability, access point name, L2 and L3 broadcast information.

Examples

The following command displays the stations seen by the system:

```
default# show dot11 associations
MAC Address       Availability  Client IP       IP Address Type AP Name         L2 Mode   L3 Mode      Authenticated User Name  Tag
00:02:6f:20:00:00 Online        192.168.10.190  Discovered      #2-2F-Sw-208    wpa-psk   clear                                 0
00:02:6f:20:00:01 Online        192.168.10.191  Discovered      #2-2F-Sw-208    wpa-psk   clear                                 0
00:02:6f:20:00:02 Online        192.168.10.192  Discovered      #2-2F-Sw-208    wpa-psk   clear                                 0
Station Table(3 entries)
default#
```

Related Commands

`show dot11 statistics client-traffic`
show dot11 statistics client-traffic

Displays station statistics.

Syntax

```
show dot11 statistics client-traffic [MAC_address]
```

ap_MAC-address

Specifies the station’s MAC address to display additional client traffic statistics.

Command Mode

EXEC

Default

None

Examples

The following command displays station statistics.

```
mc1000# show dot11 statistics client-traffic
Station Statistics

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>DHCP Req</th>
<th>AddrChg</th>
<th>VolHandoff</th>
<th>InvHandoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0c:30:be:f7:c0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00:0c:85:76:ea</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:0c:85:e7:bf:20</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>00:20:a6:4c:40:1e</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00:20:e0:98:92</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>00:40:96:40:ab:ae</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00:40:96:49:ff</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00:40:96:52:52:ae</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

mc1000#

Table 8 describes fields in `show dot11 statistics client-traffic` output.

Table 7: Output for show dot11 statistics client-traffic

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Station MAC address.</td>
</tr>
<tr>
<td>DHCP Request Count</td>
<td>Number of times a client requested an IP address while connected to the Meru Wireless LAN System WLAN.</td>
</tr>
<tr>
<td>Address Change Count</td>
<td>Number of times a client IP address changed.</td>
</tr>
</tbody>
</table>
The following command displays specific statistics for the station at MAC address 00:0e:35:09:5d:5e.

```
mcl1000# show dot11 statistics client-traffic 00:0e:35:09:5d:5e
```

Station Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>00:0e:35:09:5d:5e</td>
</tr>
<tr>
<td>DHCP Request Count</td>
<td>1</td>
</tr>
<tr>
<td>Address Change Count</td>
<td>1</td>
</tr>
<tr>
<td>Voluntary Handoff Count</td>
<td>12</td>
</tr>
<tr>
<td>Involuntary Handoff Count</td>
<td>0</td>
</tr>
<tr>
<td>QoS Active Flow Count</td>
<td>0</td>
</tr>
<tr>
<td>QoS Pending Flow Count</td>
<td>0</td>
</tr>
<tr>
<td>SIP Video Reserved Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>SIP Video Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>SIP Video Flow Count</td>
<td>0</td>
</tr>
<tr>
<td>SIP Audio Reserved Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>SIP Audio Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>SIP Audio Flow Count</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Video Reserved Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Video Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Video Flow Count</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Audio Reserved Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Audio Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Audio Flow Count</td>
<td>0</td>
</tr>
</tbody>
</table>

The following command displays specific statistics for the station at MAC address 00:0e:35:09:5d:5e:

```
mcl1000# show dot11 statistics client-traffic 00:0e:35:09:5d:5e
```

Table 7: Output for show dot11 statistics client-traffic

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voluntary Handoff Count</td>
<td>Number of times the Meru Wireless LAN System WLAN has changed AP associations to improve the client connection.</td>
</tr>
<tr>
<td>Involuntary Handoff Count</td>
<td>Number of times a client initiates an association to a different BSSID.</td>
</tr>
</tbody>
</table>
show station

Displays stations associated with the system.

Syntax

```plaintext
show station [mac-address mac-address] [details {ip-address addr | mac-address mac-address | user name}]
```

- `mac-address` MAC address of the station.
- `addr` IP address of the station.
- `name` User name associated with the station.

Command Mode

Privileged EXEC

Default

By default, output for all stations is shown.

Usage

Use the `show station` command to see a list of associated stations.

Table 8 describes the fields of the `show station` output.

Table 8: Output for show station

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>MAC address of the station.</td>
</tr>
<tr>
<td>IP Type</td>
<td>Method by which the IP address of the station is assigned:</td>
</tr>
<tr>
<td></td>
<td>- Static IP address assigned: Station uses a static IP address. IPv6 IP</td>
</tr>
<tr>
<td></td>
<td>addresses show as</td>
</tr>
<tr>
<td></td>
<td>- Dynamic IP address assigned: Station uses a static IP address, which</td>
</tr>
<tr>
<td></td>
<td>is learned from the traffic sent.</td>
</tr>
<tr>
<td></td>
<td>- DHCP: Station uses an IP address assigned by DHCP.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point.</td>
</tr>
<tr>
<td>L2 Mode</td>
<td>Layer 2 authentication used.</td>
</tr>
<tr>
<td>L3 Mode</td>
<td>Layer 3 authentication used.</td>
</tr>
<tr>
<td>Authenticated User Name</td>
<td>Authenticated user name associated with station, if used.</td>
</tr>
</tbody>
</table>
Using keywords with the **show station** command presents additional information and statistics.

Use the keyword **mac-address** with a station’s MAC address to see information about a particular station.

The IP address can appear as 0.0.0.0 in the following situations:

- Client with static IP address: After a client has associated with an access point, but before the client has sent its first packet. After the first packet is sent, the client IP address and address type appears in **show station** output.

- Client with IP address assigned by DHCP: After a client has sent a DHCP request, but before the DHCP server responds. After the DHCP server responds, the client IP address and address type appears in **show station** output.

Use the keywords **details ip-address**, **details user**, and **mac-address** to see detailed information about the station in the station table and assorted station statistics.

If a station remains inactive for 30 minutes, it is disconnected from the WLAN.

Examples

The following command displays information for associated stations.

```plaintext
mc1000# show station
Station Table

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IP Type</th>
<th>AP Name</th>
<th>L2 Mode</th>
<th>L3 Mode</th>
<th>Authenticated User Name</th>
<th>Tag</th>
<th>Client IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:04:23:5a:b3:d0</td>
<td>DHCP</td>
<td>1-201-2F-SW</td>
<td>clear</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.122</td>
</tr>
<tr>
<td>00:0f:5b:3f:9f:32</td>
<td>Discovered</td>
<td>3-208-1F-Mktg</td>
<td>clear</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.121</td>
</tr>
<tr>
<td>00:0d:93:7e:83:a7</td>
<td>DHCP</td>
<td>2-201-1P-CS</td>
<td>wpa-psk</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>fe80::0000:0000:0000:020d:93ff:fe7e:83a7</td>
</tr>
<tr>
<td>00:0e:35:09:71:96</td>
<td>DHCP</td>
<td>9-208-2F-BoardR</td>
<td>wpa-psk</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.157</td>
</tr>
<tr>
<td>00:0e:35:3f:1f:96</td>
<td>Discovered</td>
<td>3-208-1F-Mktg</td>
<td>clear</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.164</td>
</tr>
<tr>
<td>00:0e:35:7f:1c:04</td>
<td>DHCP</td>
<td>1-201-2F-SW</td>
<td>wpa-psk</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.117</td>
</tr>
<tr>
<td>00:0e:35:be:d9:cc</td>
<td>Unknown</td>
<td>6-208-2F-Hw-HiG</td>
<td>clear</td>
<td>clear</td>
<td>merunet\joe</td>
<td>0</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>00:0e:9b:6f:4a:00</td>
<td>DHCP</td>
<td>9-208-2F-BoardR</td>
<td>wpa</td>
<td>clear</td>
<td>merunet\joe</td>
<td>0</td>
<td>192.168.10.101</td>
</tr>
<tr>
<td>00:0e:9b:9a:0e:07</td>
<td>Unknown</td>
<td>3-208-1P-Mktg</td>
<td>clear</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>00:0e:9b:9a:ef:7b</td>
<td>DHCP</td>
<td>6-208-2F-Hw-HiG</td>
<td>wpa-psk</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.115</td>
</tr>
<tr>
<td>00:0e:9b:b3:25:b7</td>
<td>DHCP</td>
<td>9-208-2F-BoardR</td>
<td>wpa-psk</td>
<td>clear</td>
<td></td>
<td>0</td>
<td>192.168.10.125</td>
</tr>
</tbody>
</table>
```

Table 8: Output for show station

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>VLAN tag associated with the station, if it exists.</td>
</tr>
<tr>
<td>Client IP</td>
<td>IP address assigned to the station. IPv6 addresses display similar to fe80:0000:0000:0000:020d:93ff:fe7e:83a7 instead of a normal 4-tuple IP address.</td>
</tr>
</tbody>
</table>
Station Table

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Availability</th>
<th>Client IP</th>
<th>IP Address Type</th>
<th>AP ID</th>
<th>AP Name</th>
<th>L2 Mode</th>
<th>L3 Mode</th>
<th>Authenticated User Name</th>
<th>VLAN Name</th>
<th>Tag</th>
<th>RF Band</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:20:a6:4e:b5:9c</td>
<td>Online</td>
<td>192.168.10.140</td>
<td>DHCP</td>
<td>8</td>
<td>#8-1F-DemoArea-201</td>
<td>wpa-psk</td>
<td>clear</td>
<td>rjones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Station Statistics

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>DHCP Req</th>
<th>AddrChg</th>
<th>VolHandoff</th>
<th>InvHandoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:20:a6:4e:b5:9c</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Assigned AP Table for MAC address 00:20:a6:4e:b5:9c

<table>
<thead>
<tr>
<th>AP ID</th>
<th>Client MAC</th>
<th>Type</th>
<th>SSID</th>
<th>State</th>
<th>Encrypt</th>
<th>Pkts Rx</th>
<th>Pkts Tk</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>00:20:a6:4e:b5:9c</td>
<td>STATION</td>
<td>mwf-wpapsk</td>
<td>ASSOCIATED</td>
<td>TKIP</td>
<td>4377</td>
<td>4566</td>
</tr>
</tbody>
</table>
There are no QoS flows for MAC address 00:20:a6:4e:b5:9c (IP: 192.168.10.140)

Related
Commands
show statistics station-per-ap

Displays station statistics per access point.

Syntax

`show statistics station-per-ap [ap-id]`

ap-id Access point identification number.

Command Mode

EXEC

Default

None

Usage

Use the `show statistics station-per-ap` command to see station statistics on a per access-point basis. By default, all station statistics for all access points are shown. To see station statistics for one access point, specify the access point’s identification number when issuing the command.

Examples

The following (abbreviated) command display shows the station statistics for all access points.

```
mc1000# show statistics station-per-ap
AP  AP-Name    If  Station-MAC        Station-IP       SSID            Rx-packets    Tx-packets
    WEP-errors
2   #2-2P-Sw- 2 00:02:6f:20:00:33 0.0.0.0          mwf-wpapsk         1138          1134
2   #2-2P-Sw- 2 00:02:6f:20:00:32 0.0.0.0          mwf-wpapsk         996           988
2   #2-2P-Sw- 2 00:02:6f:20:00:31 0.0.0.0          mwf-wpapsk         1142          1132
mc1000#
```

Table 9: Output for show statistic station-per-ap

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Unique ID number of the access point to which the station is currently communicating.</td>
</tr>
<tr>
<td>AP-Name</td>
<td>Name of the access point to which the station is currently communicating.</td>
</tr>
<tr>
<td>If</td>
<td>AP interface number.</td>
</tr>
</tbody>
</table>
Table 9: Output for show statistic station-per-ap

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station-MAC</td>
<td>MAC address of the station.</td>
</tr>
<tr>
<td>Station-IP</td>
<td>IP address of the station.</td>
</tr>
<tr>
<td>SSID</td>
<td>ESSID to which the station is associated.</td>
</tr>
<tr>
<td>Rx-packets</td>
<td>Total number of packets received by the access point from the station.</td>
</tr>
<tr>
<td>Tx-packets</td>
<td>Total number of packets transmitted to the station from the access point.</td>
</tr>
<tr>
<td>WEP-errors</td>
<td>Number of WEP errors per minute. WEP errors are most likely to occur when stations have not executed the 802.1x protocol successfully during session initiation or rekey period.</td>
</tr>
</tbody>
</table>
show statistics top10-station-problem

Displays the top ten stations with the highest number of WEP errors per minute, with a minimum of 10 WEP errors per minute.

Syntax

`show statistics top10-station-problem`

Command Mode

Privileged EXEC

Default

None

Usage

Use the `show statistics top10-station-problem` command to see the top ten stations with the highest number of WEP errors per minute, with a minimum of 10 WEP errors per minute. WEP errors are most likely to occur when stations have not executed the 802.1x protocol successfully during session initiation or rekey period.

Examples

The following command displays the top ten stations with the highest number of WEP errors per minute.

```
mc1000# show statistics top10-station-problem

AP  AP Name   If  Station MAC   Station IP      WEP Errors/min
Top 10 station problem statistics(No entries)
```

Table 10 describes the fields for the `show statistics top10-station-problem` command.

Table 10: Output for show statistics top10-station-problem

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Unique ID number of the access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point to which the station is associated.</td>
</tr>
<tr>
<td>If</td>
<td>Interface number of the AP.</td>
</tr>
<tr>
<td>Station MAC</td>
<td>MAC address of the station.</td>
</tr>
</tbody>
</table>
Related Commands

`show statistics top10-station-talker`

Table 10: Output for show statistics top10-station-problem

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station IP</td>
<td>IP address of the station.</td>
</tr>
<tr>
<td>WEP Errors/Minute</td>
<td>Number of WEP errors that occurred during the last minute.</td>
</tr>
</tbody>
</table>
show statistics top10-station-talker

Displays the 10 most active stations, based on the sum of transmission and reception packet rates per minute during the last polling period.

Syntax

show statistics top10-station-talker

Command Mode

Privileged EXEC

Default

None

Usage

Use the `show statistics top10-station-talker` command to display the 10 most active stations, based on the sum of transmission and reception packet rates per minute during the last polling period. The top talker stations table shows activity based on the number of frames per minute, not actual bytes transmitted or airtime consumed.

Examples

The following command displays the most active stations.

```
mc1000# show statistics top10-station-talker

Top 10 station talker statistics request(10)
```

Table 11 describes the fields of the `show statistics top10-station-talker` output.
Table 11: Output for show statistics top10-station-talker

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Unique ID number of the access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the access point to which the station is currently communicating.</td>
</tr>
<tr>
<td>If</td>
<td>Interface number of the AP.</td>
</tr>
<tr>
<td>Station MAC</td>
<td>MAC address of the station.</td>
</tr>
<tr>
<td>Station IP</td>
<td>IP address of the station.</td>
</tr>
<tr>
<td>Rx Packets/min</td>
<td>Number of packets received during the last polling period.</td>
</tr>
<tr>
<td>Tx packets/min</td>
<td>Number of packets transmitted during the last polling period.</td>
</tr>
</tbody>
</table>

Related Commands

- `show statistics top10-station-problem`
show topostaap

Displays the station/AP edge records in the system.

Syntax

show topostaap

Command Mode

Privileged EXEC

Default

None

Usage

This command displays the station/AP edge records in the system.

Examples

mc1000# show topostaap

<table>
<thead>
<tr>
<th>Station MAC Address</th>
<th>AP ID</th>
<th>AP Name</th>
<th>Assigned</th>
<th>RSSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0d:93:82:da:b3</td>
<td>1</td>
<td>AP-1</td>
<td>on</td>
<td>36</td>
</tr>
<tr>
<td>00:40:96:40:fa:eb</td>
<td>1</td>
<td>AP-1</td>
<td>on</td>
<td>28</td>
</tr>
<tr>
<td>00:40:96:51:c6:40</td>
<td>1</td>
<td>AP-1</td>
<td>on</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Commands
show topostation

Displays information about stations currently assigned to access points.

Syntax

```
show topostation
```

Command Mode

Privileged EXEC

Default

None

Usage

Use the `show topostation` command to see information about stations currently assigned to access points (from the station point of view). Only stations that are a part of the Meru Wireless LAN System WLAN are shown. Use the `show ap-discovered` command to see other stations.

Examples

The following command displays stations that are part of the Meru Wireless LAN System WLAN:

```
mc1000# show topostation
MAC Address       AP   AP Name         Last Handoff Time        State          BSSID
00:02:c7:34:48:90 8    #8-1F-DemoArea- 2005/08/09 08:47:19      ASSOCIATED
00:0c:e6:02:07:2f
00:03:2a:00:6a:80 3    #3-2F-Exec-201  2005/08/09 14:59:04      ASSOCIATED
00:0c:e6:44:08:eb
00:03:2a:00:6b:a6 8    #8-1F-DemoArea- 2005/08/09 15:48:26      ASSOCIATED
00:0c:e6:44:08:eb
00:03:2a:00:71:c9 10   #10-1F-Mktg-208  2005/08/09 15:57:51      ASSOCIATED
00:0c:e6:44:08:eb
00:03:2a:00:73:20 8    #8-1F-DemoArea- 2005/08/09 15:50:46      ASSOCIATED
00:0c:e6:44:08:eb
00:03:2a:00:74:46 8    #8-1F-DemoArea- 2005/08/09 15:10:05      ASSOCIATED
00:0c:e6:44:08:eb
00:04:23:64:d7:ff 6    #6-1F-CS-AP201  2005/08/09 12:11:40      ASSOCIATED
00:0c:e6:ed:9b:e7
00:04:e2:b8:01:ff 6    #6-1F-CS-AP201  2005/08/09 14:07:17      ASSOCIATED
00:0c:e6:ed:9b:e7
00:05:4e:40:6f:46 10   #10-1F-Mktg-208  2005/08/09 14:26:35      ASSOCIATED
00:0c:e6:02:45:4a
00:0c:e6:02:3b:2d
00:0c:e6:02:45:4a
### Stations Topology (26 entries)

<table>
<thead>
<tr>
<th>BSSID</th>
<th>MAC Address</th>
<th>Name</th>
<th>Associated/Probing</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0e:35:06:60:54</td>
<td>00:0e:35:06:60:54</td>
<td>10</td>
<td>ASSOCIATED</td>
<td>2005/08/09 14:27:28</td>
</tr>
<tr>
<td>00:0c:e6:ed:9b:e7</td>
<td>00:0c:e6:ed:9b:e7</td>
<td>#10-1F-Mktg-208</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:26:03</td>
</tr>
<tr>
<td>00:0e:35:09:5d:5e</td>
<td>00:0c:e6:02:3b:2d</td>
<td>10</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:57:40</td>
</tr>
<tr>
<td>00:0e:35:36:f1:f6</td>
<td>00:0c:e6:ed:9b:e7</td>
<td>#3-2F-Exec-201</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:33:37</td>
</tr>
<tr>
<td>00:0e:35:3c:89:14</td>
<td>00:0c:e6:02:d8:a2</td>
<td>6</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:31:14</td>
</tr>
<tr>
<td>00:0c:e6:02:5e:3e</td>
<td>00:0c:e6:02:5e:3e</td>
<td>#3-2F-Exec-201</td>
<td>ASSOCIATED</td>
<td>2005/08/09 10:29:42</td>
</tr>
<tr>
<td>00:12:f0:29:61:d7</td>
<td>00:0c:e6:02:07:2f</td>
<td>8</td>
<td>ASSOCIATED</td>
<td>2005/08/09 12:42:23</td>
</tr>
<tr>
<td>00:12:f0:54:b6:16</td>
<td>00:0c:e6:02:07:2f</td>
<td>#8-1F-DemoArea-</td>
<td>ASSOCIATED</td>
<td>2005/08/09 13:28:19</td>
</tr>
<tr>
<td>00:20:a6:4e:b5:9c</td>
<td>00:0c:e6:02:07:2f</td>
<td>#8-1F-DemoArea-</td>
<td>ASSOCIATED</td>
<td>2005/08/09 14:46:53</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:07:2f</td>
<td>#10-1F-Mktg-208</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:36:04</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:07:2f</td>
<td>#2-2F-Sw-208</td>
<td>ASSOCIATED</td>
<td>2005/08/09 12:04:19</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:3b:2d</td>
<td>#10-1F-Mktg-208</td>
<td>PROBING</td>
<td>2005/08/09 15:38:46</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:45:4a</td>
<td>#3-2F-Exec-201</td>
<td>ASSOCIATED</td>
<td>2005/08/09 16:03:39</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:5e:3e</td>
<td>#6-1F-CS-AP201</td>
<td>ASSOCIATED</td>
<td>2005/08/09 15:58:46</td>
</tr>
<tr>
<td>00:40:96:a9:20:94</td>
<td>00:0c:e6:02:8d:a2</td>
<td>#6-1F-CS-AP201</td>
<td>PROBING</td>
<td>2005/08/09 15:58:46</td>
</tr>
</tbody>
</table>

**Related Commands**

- `show ap-discovered`

---

406 Meru Wireless LAN System Command Reference
Chapter 15
Troubleshooting Commands

The commands that help troubleshoot the WLAN are:

- analyze-capture
- capture-packets
- debug controller
- debug module
- diagnostics
- diagnostics-controller
- remote-log
analyze-capture

Analyzes wireless traffic.

Syntax

analyze-capture snapshot

analyze-capture start filename ap ap-list bssid bssid-list

analyze-capture stop

Command Mode

Privileged EXEC

Default

None

Usage

The `analyze-capture` command captures 802.11 management and TCP session state statistics for all clients using any of the specified APs and BSSIDs. The type of information that is collected are client re-auths and re-associations and TCP session statistics.

The command can be started and run for long periods without consuming disk space. No output is produced until the `snapshot` or `stop` keywords are given.

Double quotes must be used to group a string of APs or BSSIDs.

Examples

As an example, the following command creates the capture in file `check.txt` for APs 1-3 and BSSIDs 00:0c:e6:32:22:01 and 00:0c:e6:30:11:22.

```
mc1000# analyze-capture start check.txt ap "1 2 3" bssid "00:0c:e6:32:22:01 00:0c:e6:30:11:22"
```

```
mc1000#
```
Captures packets, using Ethereal, on the controller’s interface or over the air from access points.

**Syntax**

capture-packets [\(c\) count][\(-i\) ap_id1[, ap_id2, ...]] \[\{m,n,t\}\] [-r infile] [-R filter]r[a]d[d] [-V] [-v frame] [-w savefile] [-a stop-condition] [-x]

- **a stop-condition** Stop criterion (e.g. -a filesize:1000)
- **c count** count specifies the default number of packets to read when capturing live data.
- **f capture-filter** filter expression.
- **F file-format** Format of the capture file (for example, -F netmon1).
- **i ap_id1[, ap_id2, ...]** Captures packets from an AP (specified by its number), followed by optionally, a list of additional APs.
- **n** Disables network object name resolution (such as hostname, TCP, and UDP port names).
- **N {m,n,t}** Enables name resolution for particular types of addresses and port numbers, with name resolving for other types of addresses and port numbers turned off. The argument is a string that can contain the letters m to enable MAC address resolution, n to enable network address resolution, and t to enable transport-layer port number resolution. This argument overrides the -n argument if both -N and -n are present.
- **p** Disables promiscuous mode for the interface.
- **q** Do not display count of packets captured.
- **r infile** Prints a summary of a previously captured file with an additional field (frame number) in the first column.
- **R ‘display-filter’** Applies a custom or Ethereal filter before displaying captures. Build complex filters by enclosing filter names between single quotation marks (‘’) and joining with expression operators. Do not use spaces with complex filters, that is, those that use operators such as ==. See the table that follows for a list of custom filters you can use with this argument. For information about Ethereal filters, see http://www.ethereal.com/docs/man-pages/ethereal-filter.4.html.
- **S Record** Record/summarize with frame number for playback.
- **s snaplen** snaplen defines the default snapshot length of live data.
Command  Mode

Global configuration

Default  None

Limitations  The -i apid option is not supported on the AP150 or RS4000.

Usage  Use the capture-packets command to capture network traffic. Use the capture-packets command with no arguments to capture packets on the controller’s interface. The capture-packets command can also capture packets from access points if you issue the debug ap command first. You can filter the packets so that you only see packets captured by access points. By default, you see packets from access points and the controller’s local interface. You can see the captures in realtime or save them to a file for future offline analysis. If you are using SSH to access the controller, consider filtering SSH traffic to reduce the amount of information that gets captured and displayed. (See “Examples” on page 413 for an example.)

To stop realtime packet capture, press Ctrl-C.
Packets captured by the access point include traffic from unknown access points and traffic between Meru Access Points. Use the -R argument to filter the packets captured. (See the following table for a list of custom filters.)

WEP-encrypted frames are encrypted when captured over the air. To capture unencrypted data frames, get captures from the controller’s local interface. If you use static WEP keys, frames can be decoded using the Windows version of Ethereal with the Meru plug-in.

Packets transmitted by an access point are different from packets received by an access point in the following ways:

- There is one packet for every retry received by the access point. The retry bit is set as received over the air. Transmitted frames only appear once, regardless of the number of retransmissions. Use the controller.cap.tx.flags.retries field to see the number of times a frame was retried. The retry bit of the 802.11 MAC header is always set to zero for transmitted frames.
- For received frames, the TSF field is the exact time the first bit a frame was received. For transmitted frames, the TSF field is the time immediately after the last transmission.
- Received 802.11 acknowledgments are captured, but transmitted acknowledgments are not.

Captured frames that exceed the Ethernet MTU are fragmented. When looking at capture entries, the second entry for a fragmented frame appears as “M-Cap 802.11 Continuation Controller ATS Capture Fragment Continuation” as the summary.

The following lists the filters that can be used with the -R argument for the capture-packets command:

- controller.cap
  - Limits only packets captured by the access point and excludes packets from the controller’s local interface.
- controller.cap.version
  - Version of the tunnel.
- controller.cap.outer.fraglen
  - Length of the fragment.
- controller.cap.frags
  - Fragment field.
- controller.cap.outer.fragmented
  - Fragmented.
- controller.cap.outer.morefrags
  - More fragments.
- controller.cap.outer.fragnumber
  - Fragment number.
- controller.cap.outer.seq
  - Direction of captured frame (transmitted or received).
- controller.cap.rx.flags
  - Receive flags.
- controller.cap.rx.flags.diversity
  - Received with antenna diversity.
- controller.cap.rx.flags.antenna_select
  - Antenna frame received on.
- controller.cap.rx.flags.shortpreamble
  - Short preamble.
- controller.cap.rx.flags.assigned
  - Whether the sender is assigned to this AP.
- controller.cap.rx.flags.fcs_failure
  - Whether the checksum is valid.
- controller.cap.rx.flags.frame_too_late
  - Whether a frame was received too late from carrier sense to make sense.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller.cap.rx.silence</td>
<td>Signal strength immediately before the packet.</td>
</tr>
<tr>
<td>controller.cap.rx.signal</td>
<td>Signal strength during the packet.</td>
</tr>
<tr>
<td>controller.cap.rx.left_rssi</td>
<td>RSSI from the left antenna.</td>
</tr>
<tr>
<td>controller.cap.rx.right_rssi</td>
<td>RSSI from the right antenna.</td>
</tr>
<tr>
<td>controller.cap.rx.rate</td>
<td>802.11 packet rate (in 100 Kbps).</td>
</tr>
<tr>
<td>controller.cap.rx.cca_dclk</td>
<td>Time from the CCA high to the first data bit (in microseconds).</td>
</tr>
<tr>
<td>controller.cap.rx.length</td>
<td>Length of the received 802.11 frame.</td>
</tr>
<tr>
<td>controller.cap.rx.time</td>
<td>Lower TSF time the frame.</td>
</tr>
<tr>
<td>controller.cap.rx.channel</td>
<td>Channel the frame was received on.</td>
</tr>
<tr>
<td>controller.cap.rx.crc</td>
<td>802.11 FCS.</td>
</tr>
<tr>
<td>controller.cap.tx.flags</td>
<td>Transmit flags.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.success</td>
<td>Whether an 802.11 acknowledgement was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.initcts</td>
<td>If an RTS was sent for the initial transmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry1cts</td>
<td>If an RTS was sent for the first retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry2cts</td>
<td>If an RTS was sent for the second retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry3cts</td>
<td>If an RTS was sent for the third retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry4cts</td>
<td>If an RTS was sent for the fourth retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry5cts</td>
<td>If an RTS was sent for the fifth retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry6cts</td>
<td>If an RTS was sent for the sixth retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retry7cts</td>
<td>If an RTS was sent for the seventh retransmission, indicates whether a CTS was received.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.ackps</td>
<td>PS bit of acknowledgment (if any).</td>
</tr>
<tr>
<td>controller.cap.tx.flags.ackrssi</td>
<td>RSSI of acknowledgment (if any).</td>
</tr>
<tr>
<td>controller.cap.tx.flags.retries</td>
<td>Retransmissions attempted (zero if frame transmitted only once).</td>
</tr>
<tr>
<td>controller.cap.tx.flags.antenna</td>
<td>Antenna frame transmitted on.</td>
</tr>
<tr>
<td>controller.cap.tx.flags.preamble</td>
<td>Short preamble used to transmit the frame (or final frame if retried).</td>
</tr>
<tr>
<td>controller.cap.tx.time</td>
<td>Lower TSF time the frame was transmitted (or final frame if retried).</td>
</tr>
<tr>
<td>controller.cap.tx.length</td>
<td>Length of the 802.11 frame.</td>
</tr>
</tbody>
</table>
Examples

The following command captures only ICMP packets:

```
mc1000# capture-packets -R icmp
```

Capturing on controller

<table>
<thead>
<tr>
<th>Time</th>
<th>Source IP</th>
<th>Destination IP</th>
<th>Packet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.434804</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>30.435000</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>31.433751</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>31.433866</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>32.432920</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>32.433042</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>33.432088</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>33.432203</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>34.431320</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>34.431434</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>35.430419</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>35.430523</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
<tr>
<td>36.429761</td>
<td>10.1.225.50</td>
<td>10.1.250.15</td>
<td>ICMP Echo (ping) request</td>
</tr>
<tr>
<td>36.429860</td>
<td>10.1.250.15</td>
<td>10.1.225.50</td>
<td>ICMP Echo (ping) reply</td>
</tr>
</tbody>
</table>

The following command filters SSH traffic:

```
mc1000# capture-packets -R \'tcp.srcport!=22&&tcp.dstport!=22\'
```

The following command captures packets to a file named `capture-file` with a maximum file size of 5 MB:

```
mc1000# capture-packets -w capture-file -a filesize:5000
```

Capturing on controller

```
mc1000#
```

The following command captures only RADIUS frames to and from the IP address 10.1.225.42:

```
mc1000# capture-packets -w capture_file -a filesize:5000 -R \'ip.addr==10.1.225.42&&radius\'
```

The following commands filter for DHCP frames, which are saved to a file named `capture_file`, and show the captured file:

```
mc1000# debug ap 1
mc1000# capture-packets -w capture_file -a filesize:5000 -R bootp.dhcp
```

```
capture_file
```

```
mc1000# capture-packets -r capture_file
```

1   0.000000  10.0.220.49 -> 10.0.0.10    DHCP DHCP Request - Transaction ID 0x9a5e380e
2   0.002390    10.0.0.10 -> 10.0.220.49  DHCP DHCP ACK - Transaction ID 0x9a5e380e
The following commands filter for all traffic on BSS 00:0c:e6:01:00:0d, all traffic to and from client 00:07:40:01:02:03, and all EAPOL traffic, respectively:

mc1000# capture-packets -R 'wlan.bssid==00:0c:e6:01:00:0d'
mc1000# capture-packets -R 'wlan.addr==00:07:40:01:02:03'
mc1000# capture-packets -R eapol

Related Commands
debug controller

Enables real-time tracing on the controller.

Syntax

d debug controller

no debug controller

Command Mode

Privileged EXEC

Default

None

Usage

After specifying a trace facility using the debug module command, use the debug controller command to enable tracing on the controller. All trace information is shown on the controller console window.

To disable tracing, use the no form. The no form disables all debug module commands previously entered.

Examples

The following command enables tracing on the controller and shows an abbreviated debug message list:

```
mc1000# debug controller
Real-time trace display enabled for severity >= 0.
mc1000# [08/05 14:29:06.190] QOS: RsucRsoMsgProcessor: topo-rm msg type = 0, len= 52.

[08/05 14:29:27.047] SEC: ieee802_1x_receive: Set NAS-port to <2051>
[08/05 14:29:27.048] SEC: Received EAPOL-START frame from client (00:0e:35:09:5d:5e).
[08/05 14:29:27.048] SEC: Sending EAPOL-EAP Request-Identity to client (00:0e:35:09:5d:5e), ID (1).
```

Related Commands

d debug module
debug module

Enables tracing for a specific facility.

Syntax

```
debug module {ip | coord | sec}
```

```
no debug module
```

**ip** Specifies DHCP trace facility.

**coord** Specifies client-access point assignment trace facility.

**sec** Specifies security trace facility.

Command Mode

Privileged EXEC

Default

None

Usage

Use the `debug module` command to specify a facility to trace. You can issue the `debug module` command multiple times with a different facility keyword. After specifying a facility to trace, you enable tracing on the controller with the `debug controller` command to send trace information to the controller console.

Examples

The following commands specify security and DHCP as the facilities to trace:

```
mc1000# debug module sec
mc1000# debug module ip
```

Related Commands

`debug controller`
diagnostics

Collects system diagnostics and outputs to log file.

**Syntax**

```
diagnostics
```

**Command Mode**

Privileged EXEC

**Default**

**Usage**

The `diagnostics` command gathers system information from the controller and all APs in the WLAN, and places the data into a log file that is compressed before it is saved. The compressed log file can be sent to Support as an aid in debugging system issues.

In a WLAN with over 100 APs, this command can take over 10 minutes to complete.

The compressed file name integrates a datestamp that includes the `year:month:day:hour:minutes` (`meru-gather-2006.09.24.20.59.tar.gz`), and is saved in the `images` directory. You can later use the `copy ftp` command to move the file to a server where it can be sent to Support.

**Examples**

```
mc1000# diagnostics
Cleaning up previous gather data
Getting process information ...
Getting system log information ...
Getting kernel information ...
Getting network information ...
Getting software information ...
Getting version information ...
Getting disk information ...
Getting Meru data ...
Getting high availability information ...
Data gathering phase complete

images/meru-gather-2006.09.24.20.59.tar.gz created
Use the ftp option of the cli command to move this file off the machine
```

**Related Commands**

`diagnostics-controller`
**diagnostics-controller**

Collects controller diagnostics and outputs to log file.

**Syntax**

```
diagnostics-controller
```

**Command Mode**

Privileged EXEC

**Default**

**Usage**

The `diagnostics-controller` command gathers information from the controller, and places the data into a log file that is compressed before it is saved. The compressed log file can be sent to Support as an aid in debugging system issues.

The compressed file name integrates a datestamp that includes the `year.month.day.hour.minutes` (meru-gather-2006.09.24.20.57.tar.gz), and is saved in the images directory. You can later use the `copy ftp` command to move the file to a server where it can be sent to Support.

This command is similar to the `diagnostics` command, but collects only controller information. As such, it will complete in less time than the `diagnostics` command.

**Examples**

```
mc1000# diagnostics-controller
Getting process information ...
Getting system log information ...
Getting kernel information ...
Getting network information ...
Getting software information ...
Getting version information ...
Getting disk information ...
Getting Meru data ...
Getting high availability information ...
Data gathering phase complete

images/meru-gather-2006.09.24.20.57.tar.gz created
Use the ftp option of the cli command to move this file off the machine
```

**Related Commands**

`diagnostics`
remote-log

Configure a remote site for maintaining logs.

Syntax

remote-log {start | stop} smb [mount-point] [workgroup] [username]

- **mount-point**: Specifies the mount point of the remote disk (//hostname/sharename).
- **workgroup**: Specifies the workgroup where the user has permission to create remote log configuration.
- **username**: Specifies the name of the user creating the remote log configuration.

Command Mode

Privileged EXEC

Default

None

Usage

The `remote-log` command allows you to copy all system logs to a network shared disk. By default, log entries are stored on the controller flash card, which by its nature is limited. As a result, log entries are purged when a certain amount of space is consumed to allow for newer entries. By specifying a network share, the complete history of logged entries can be kept.

To establish remote logging, use the command `remote-log start smb` and add an optional network mount-point, workgroup, and username. You will be prompted for the username password. To stop the remote logging and unmount the share, use the same command parameters but use the `stop` keyword instead of the `start` keyword.

Be sure you have a reliable connection to the share. You will be prompted for your workgroup and username, if it is not supplied on the command line.

Examples

The following commands allow the user admin in the engineering workgroup to create a remote log on the server maple using the shared disk IT:

```
mc1000# remote-log start smb //maple/IT engineering admin
mc1000#
```

Related Commands

- `imount-point`: Specifies the mount point of the remote disk (//hostname/sharename).
- `workgroup`: Specifies the workgroup where the user has permission to create remote log configuration.
- `username`: Specifies the name of the user creating the remote log configuration.
Symbols

? 12

Numerics

2bridge ipv6 202
802.1x-network-initiation 138

A

access-list deny 306
access-list deny import 308
access-list permit 310
access-list permit import 311
access-list radius-server 313
access-list state 315
accounting interim-interval 188
accounting primary-radius 189
accounting secondary-radius 190
action 322
admin-mode 219
allowed-t2-modes 139
analyze-capture snapshot 408
analyze-capture start 408
analyze-capture stop 408
antenna property 220
antenna-selection 221
ap 222
ap-discovery join-ess 192
ap-discovery join-virtual-ap 193
ap-redirect 224
audit period 56
auto-ap-upgrade 225
autochannel 227
avgpacketrate 323

B

base-tx-rates 195
beacon dtim-period 197
beacon period 198
boot-script 228

C

calendar set 57
calls-per-bss 199
captive-portal enable 141
capture-packets 409
cd 28
channel 230
clear certificates extension-type 142
clear certificates name 143
clear statistics interfaces Dot11Radio 58
clear statistics interfaces FastEthernet 58
connectivity 232
contact 234
controller domainname 235
controller hostname 236
copy 29, 31
copy running-config ftp 31
copy running-config scp 31
copy running-config startup-config 31
copy running-config tftp 31

datel 59
date 59
debug controller 415
debug module 416
delete 33
description 144, 240
diagnostics 60, 417
diagnostics-controller 418
dir 35
disable 13
do 14
downgrade 36
droppolicy 324
dscp 325
dstip 326
dstmask 327
dstport 328
no radius-server all 160
no radius-server primary 160
no radius-server secondary 161
no reauth 162
no rekey multicast-enable 163
no rekey period 164
no remote-ap-enable 205
no rogue-ap acl 288
no rogue-ap blocked 291
no rogue-ap detection 293
no security-profile 165
no shared-authentication 167
no silent-client-enable 211
no snmp-server community 381
no static-wep key 181
no station 388
no supported-tx-rates 212
no swap 284
no syslog-host 104
no terminal history 23, 24
no trafficcontrol 375
no vlan 184, 185, 214
ntp server 69
ntp sync 69

P
passwd 70
peakrate 329
ping 71
port 155
power local 253
poweroff controller 72
preamble-short 254
priority 330
prompt 19
protection mode 256
protection-cts-mode 255
psk key 156
publish-essid 204
pwd 39

Q
qoscodec 331
qosrule 335
qosvars admission 338
qosvars bwscaling 340
qosvars cac-deauth 341
qosvars calls-per-ap 342
qosvars calls-per-bssid 343
qosvars drop-policy 344
qosvars enable 345
qosvars load-balance-overflow 346
qosvars max-stations-per-bssid 348
qosvars max-stations-per-ap 347
qosvars max-stations-per-bssid 348
qosvars no enable 349
qosvars stations-assign-age 350, 351
qosvars tcpttl 352
qosvars ttl 353
qosvars udpttl 354
quit 20

R
radius-profile 158
radius-server primary 160
radius-server secondary 161
reauth 162
rekey multicast-enable 163
rekey period 164
reload 40, 73
reload all 73
reload ap 73
reload controller 73
reload default 73
reload-management 74
reload-snmp 378
remote-ap-enable 205
remote-log 419
rename 41
rf-mode 258
rogue-ap acl 288
rogue-ap aging 289
rogue-ap assigned-aps 290
rogue-ap blocked 291
rogue-ap detection 293
rogue-ap mitigation 294
rogue-ap mitigation-frames 295
rogue-ap operational-time 296
rogue-ap scanning-channel 297
rogue-ap scanning-time 299
rspecrate 355
rspecslack 356
run 42

S
security-profile 165, 206
setup 75
shared-authentication 167
show aaa 168
show access-list deny 317
show access-list permit 318
show access-list state 319
show alarm 77
show antenna-property 272
show ap 259
show ap-assigned 389
show ap-connectivity 261
show ap-discovered 263
show ap-redirect 265
show ap-siblings 266
show ap-swap 268
show calendar 79
show certificate detail 169
show certificate installed 171
show controller 80
show controller cpu-utilization 83
show controller file systems 43
show controller memory 86
show controller processes 87
show dot11 associations 391
show dot11 statistics client-traffic 392
show ess-ap 207
show ess-ap ap 269
show essid 208
show file systems 84
show flash 45, 89
show high-availability 90
show history 21
show hostname 93
show interfaces Dot11Radio 270
show interfaces Dot11Radio statistics 274
show interfaces FastEthernet controller 127
show interfaces FastEthernet statistics 130
show ip 131
show license 94
show license-file 96
show log 97
show log running-config 46, 47
show memory 86
show ntp-server 98
show phone-calls 361
show phones 360
show qoscodec 362
show qosflows 364
show qosrule 366
show qosstats 369
show qovars 370
show radius-profile 172
show regulatory-domain 277
show rogue-ap acl 300
show rogue-ap blocked 301
show rogue-ap globals 302
show rogue-ap-list 303
show running-config 46
show scripts 48
show security-profile 173
show snmp-community 379
show snmp-trap 380
show ssl-server 175
show startup-config 47
show station 394
show statistics call-admission-control 372
show statistics station-per-ap 398
show statistics top10-ap-problem 278
show statistics top10-ap-talker 279
show statistics top10-station-problem 400
show statistics top10-station-talker 402
show syslog-file 99
show syslog-host 100
show syslog-table 101
show terminal 22
show timezones 102
show topoap 281
show topoapap 282
show topostaap 404
show topostation 405
show vlan 134
show web custom-area 176
show web login-page 176
silent-client-enable 211
snmp-server community 381
snmp-server contact 382
snmp-server description 383
snmp-server location 384
snmp-server trap 385
srcip 357
srcmask 358
srcport 359
ssid 210
ssl-server associate pem 177
ssl-server associate pfx 178
ssl-server no-1st-radius 180
ssl-server no-2nd-radius 180
ssl-server port 179
ssl-server radius-profile primary 180
ssl-server radius-profile secondary 180
static-wep key 181
static-wep key-index 183
statistics period 103
supported-tx-rates 212
swap 284
syslog-host 104

t
telnet 105
terminatal history 23
terminatal history size 24
terminatal length 25
terminatal width 26
timezone 106
tokenbucketrate 373
tokenbucketsize 374
traceroute 108
trafficcontrol-enable 375
U
upgrade ap 49
upgrade controller 51
upgrade system 53

V
vlan 136, 184
vlan name 214
vlan support 215

W
web login-page 185